In this work, acoustic performances of a liner concept based on perforated screens backed by air cavities are investigated numerically for circular ducts with mean flow. Dimensions of the cavity are chosen to be of the order or bigger than the wavelength so acoustic waves within the liner can propagate parallel to the duct surface. In this case, the liner becomes nonlocally reacting and this gives rise to additional resonance effects which renders the attenuation more effective over a broader frequency range. In order to predict the mufflers’ acoustic performances, a special boundary integral method is presented. Using a tailored Green’s function for hard wall circular ducts containing uniform mean flow, the numerical technique only requires the discretization of the acoustic velocity potential on both sides of the perforated screen separating the central channel from the air cavities. Comparisons with finite element results show that the proposed method allows accurate results for a relatively modest computational cost. Influence of the mean flow in the central airway, the dimensions of the cavity as well as the nature of the incident field on acoustic performances are also shown and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.