The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation γ-ray spectrometer. AGATA is based on the technique of γ-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a γ ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of γ-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer
Multinucleon transfer reactions in 40Ca+96Zr and 90Zr+208Pb have been measured at energies close to the Coulomb barrier in a high-resolution γ-particle coincidence experiment. The large-solid-angle magnetic spectrometer PRISMA coupled to the CLARA γ array has been employed. Trajectory reconstruction has been applied for the complete identification of transfer products. Mass and charge yields, total kinetic energy losses, γ transitions of the binary reaction partners, and comparison of data with semiclassical calculations are reported. Specific transitions in 95Zr populated in one-particle transfer channels are discussed in terms of particle-phonon couplings. The γ decays from states in 42Ca in the excitation energy region expected from pairing vibrations are also observed
þ states, pointing to the oblate, spherical, and prolate nature of the consecutive excitations. In addition, they account for the hindrance of the E2 decay from the prolate 0 þ 4 to the spherical 2 þ 1 state, although overestimating its value. This result makes 66 Ni a unique nuclear system, apart from 236;238 U, in which a retarded γ transition from a 0 þ deformed state to a spherical configuration is observed, resembling a shape-isomerlike behavior. DOI: 10.1103/PhysRevLett.118.162502 The concept of potential energy surface (PES) is central in many areas of physics. Usually, the PES displays the potential energy of the system as a function of its geometry. As an example, the PES of a molecule expressed in such coordinates as bond length, valence angles, etc., can be used for finding the minimum energy shape or calculating chemical reaction rates [1]. The idea of potential energy surface in deformation space has also been widely applied to the nucleus at a given spin. For an even-even nucleus at spin 0, the lowest PES minimum corresponds to the ground state (g.s.), while there may exist additional (secondary) minima in which excited 0 þ states can reside: they can be interpreted as ground states of different shapes [2][3][4][5][6]. When a secondary minimum is separated from the main minimum by a high barrier, in the extreme case a long-lived isomer, called shape isomer, can be formed [7]. Shape isomerism at spin zero, so far, has clearly been observed only in actinide nuclei -these isomers decay mainly by fission, and in two cases only, 236 U and 238 U, by very retarded γ-ray branches [8][9][10][11].The existence of shape isomers in lighter systems has been a matter of debate for a long time. Already in the 1980s, a study based on microscopic Hartree-Fock plus BCS calculations, in which a large number of nuclei was surveyed, identified ten isotopes in which a deformed 0 þ state is separated from a spherical structure by a significantly high barrier:66 Ni and 68 Ni, 190;192 Pt, 206;208;210 Os, and 194;196;214
Beta-delayed proton emission from 20 Mg has been measured at ISOLDE, CERN, with the ISOLDE Decay Station (IDS) setup including both charged-particle and gamma-ray detection capabilities. A total of 26 delayed proton branches were measured including seven so far unobserved. An updated decay scheme, including three new resonances above the proton separation energy in 20 Na and more precise resonance energies, is presented. Beta-decay feeding to two resonances above the Isobaric Analogue State (IAS) in 20 Na is observed. This may allow studies of the 4032.9(2.4) keV resonance in 19 Ne through the beta decay of 20 Mg, which is important for the astrophysically relevant reaction 15 O(α, γ) 19 Ne. Beta-delayed protons were used to obtain a more precise value for the half-life of 20 Mg, 90.9(1.2) ms. PACS. 23.20.Lv γ transitions and level energies-26.30.Ca Explosive burning in accreting binary systems (novae, x-ray bursts)-27.30.+t 20 ≤ A ≤ 38-29.30.Ep Charged-particle spectroscopy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.