The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation γ-ray spectrometer. AGATA is based on the technique of γ-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a γ ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of γ-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer
Parameters of widely used nuclear rms charge radius formulas have been refitted based on the latest experimental data for about 900 nuclei. It has been seen that the new parameters in the formulas give better results than the previous ones. Besides, an N1?3-dependent formula has been proposed and discussed. This formula gives effective results for rms charge radius. The standard deviation in all formulas with new parameters are concentrated between ?0.1 and 0.1. In other words, for about 90% of nuclei, the differences of charge radii from experimental values are lower than 0.1 fm
The artificial neural networks (ANNs) have emerged with successful applications in nuclear physics as well as in many fields of science in recent years. In this paper, by using (ANNs), we have constructed a formula for the nuclear charge radii. Statistical modeling of nuclear charge radii by using ANNs has been seen as to be successful. Also, the charge radii, binding energies and two-neutron separation energies of Sn isotopes have been calculated by implementing of the new formula in Hartree-Fock-Bogoliubov (HFB) calculations. The results of the study shows that the new formula is useful for describing nuclear charge radii.
One of the fundamental ground-state properties of nuclei is binding energy. In this study, we have employed artificial neural networks (ANNs) to obtain binding energies based on the data calculated from Hartree-Fock-Bogolibov (HFB) method with the two SLy4 and SKP Skyrme forces. Also, ANNs have been employed to obtain two-neutron and two-proton separation energies of nuclei. Statistical modeling of nuclear data using ANNs has been seen as to be successful in this study. Such a statistical model can be possible tool for searching in systematics of nuclei beyond existing experimental nuclear data.
The K hindrance to the γ decay is studied in the warm rotating 174 W nucleus, focusing on the weakening of the selection rules of the K quantum number with increasing excitation energy. 174 W was populated by the fusion reaction of 50 Ti (at 217 MeV) on a 128 Te target, and its γ decay was detected by the AGATA Demonstrator array coupled to a BaF 2 multiplicity filter at Laboratori Nazionali di Legnaro of INFN. A fluctuation analysis of γ coincidence matrices gives a similar number of low-K and high-K discrete excited bands. The results are compared to simulations of the γ -decay flow based on a microscopic cranked shell model at finite temperature in which the K mixing is governed by the interplay of Coriolis force with the residual interaction. Agreement between simulations and experiment is obtained only by hindering the E1 decay between low-K and high-K bands by an amount compatible with that determined by spectroscopic studies of K isomers in the same mass region, with a similar trend with excitation energy. The work indicates that K mixing due to temperature effects may play a leading role for the entire body of discrete excited bands, which probes the onset region of K weakening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.