Circulating inhibitors against von Willebrand factor (vWF) that show the properties of heterologous IgG antibodies have been described in a few patients with severe von Willebrand disease (vWD). The present study provides further characterization of inhibitors from two patients with severe vWD. Inhibitors in both, like polyclonal rabbit antibody, detected all sizes of multimers and the complex structure of each multimer from platelets and plasma of normal individuals as well as from plasma of patients with IIA, IIB, and IIC vWD. Both inhibitors and the rabbit antibody reacted mainly with the intact 225-Kd vWF subunit and the 189-H and 140-Kd fragments in contrast to monoclonal antibodies specific for vWF fragments that detected a higher relative proportion of 176-Kd fragment. Furthermore, all these antibodies recognized fragment III, although one inhibitor and rabbit polyclonal antibody reacted poorly and the other inhibitor did not react at all with reduced fragment II of vWF digested with Staphylococcus aureus V-8 protease. These data suggest that although human inhibitors from severe vWD patients may behave, to some extent, as polyclonal heterologous antibodies against native vWF, the former show striking differences in their target specificity as well as a much broader specificity than that described for human factor VIII inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.