Open microscale cultures of primary central nervous system (CNS) cells have been implemented in microfluidic chips that can expose the cells to physiological fluidic shear stress conditions. Cells in the chips were exposed to differently aggregated forms of beta-amyloid (Aβ), i.e. conditions mimicking an Alzheimer's Disease environment, and treated with CNS drugs in order to assess the contribution of glial cells during pharmacological treatments. FTY720, a drug approved for the treatment of Multiple Sclerosis, was found to play a marked neuroprotective role in neuronal cultures as well as in microglia-enriched neuronal cultures, preventing neurodegeneration after cell exposure to neurotoxic oligomers of Aβ.
Charcot-Marie-Tooth disease type 1A (CMT1A), caused by duplication of the peripheral myelin protein 22 (PMP22) gene, and CMT1B, caused by mutations in myelin protein zero (MPZ) gene, are the two most common forms of demyelinating CMT (CMT1), and no treatments are available for either. Prior studies of the MpzSer63del mouse model of CMT1B have demonstrated that protein misfolding, endoplasmic reticulum (ER) retention and activation of the unfolded protein response (UPR) contributed to the neuropathy. Heterozygous patients with an arginine to cysteine mutation in MPZ (MPZR98C) develop a severe infantile form of CMT1B which is modelled by MpzR98C/ + mice that also show ER stress and an activated UPR. C3-PMP22 mice are considered to effectively model CMT1A. Altered proteostasis, ER stress and activation of the UPR have been demonstrated in mice carrying Pmp22 mutations. To determine whether enabling the ER stress/UPR and readjusting protein homeostasis would effectively treat these models of CMT1B and CMT1A, we administered Sephin1/IFB-088/icerguestat, a UPR modulator which showed efficacy in the MpzS63del model of CMT1B, to heterozygous MpzR98C and C3-PMP22 mice. Mice were analysed by behavioural, neurophysiological, morphological and biochemical measures. Both MpzR98C/ + and C3-PMP22 mice improved in motor function and neurophysiology. Myelination, as demonstrated by g-ratios and myelin thickness, improved in CMT1B and CMT1A mice and markers of UPR activation returned towards wild-type values. Taken together, our results demonstrate the capability of IFB-088 to treat a second mouse model of CMT1B and a mouse model of CMT1A, the most common form of CMT. Given the recent benefits of IFB-088 treatment in amyotrophic lateral sclerosis and multiple sclerosis animal models, these data demonstrate its potential in managing UPR and ER stress for multiple mutations in CMT1 as well as in other neurodegenerative diseases. Graphical Abstract (Left panel) the accumulation of overexpressed PMP22 or misfolded mutant P0 in the Schwann cell endoplasmic reticulum (ER) leads to overwhelming of the degradative capacity, activation of ER-stress mechanisms, and myelination impairment. (Right panel) by prolonging eIF2α phosphorylation, IFB-088 reduces the amount of newly synthesized proteins entering the ER, allowing the protein quality control systems to better cope with the unfolded/misfolded protein and allowing myelination to progress.
Neuroinflammation plays a central role in neurodegenerative diseases and involves a large number of interactions between different brain cell types. Unraveling the complexity of cell-cell interaction in neuroinflammation is crucial for both clarifying the molecular mechanisms involved and increasing efficacy in drug development. Here, we provide a versatile analytical method for specifically addressing cell-to-cell communication, using primary brain cells, a microfluidic device, and a multiparametric readout approach. Different cell types are plated in separate chambers of a microfluidic network so that culturing conditions can be independently controlled and single cell types can be selectively primed with different stimuli. When chambers are microfluidically connected, the specific contribution of each cell type can be finely monitored by analyzing morphology, vitality, calcium dynamics, and electrophysiology parameters. We exemplify this approach by examining the role of astrocytes derived from two different brain regions (cortex and hippocampus) on neuronal viability in two types of neuroinflammatory insults, namely, metabolic stress and exposure to amyloid β fibrils, and demonstrate regional differences in glial control of neuronal physiopathology. In particular, we show that during metabolic stress, cortical but not hippocampal astrocytes play a neuroprotective role; also, in an exacerbated inflammatory scenario consisting in the exposure to Aβ + IL-1β, hippocampal but not cortical astrocytes play a detrimental role on neurons. Aside from bringing novel insights into the glial role in neuroinflammation, the method presented here represents a promising tool for addressing a wide range of biological and biochemical phenomena, characterized by a complex interaction of multiple cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.