The EU aims to be climate-neutral by 2050 and usage of liquid hydrogen (LH2) for transportation is expected to grow fast. With the expected uptake, traceability in custody transfer is required. Existing metrological infrastructure can be used to provide traceability with basic calibrations performed typically under ambient conditions. However, due to the very challenging LH2 process conditions, with temperatures as low as 20 K, there is a need to determine the flow measurement uncertainty at these process conditions. Within the Joint Research Project (JRP) 20IND11 "Metrology infrastructure for high-pressure gas and liquified hydrogen flows" (MetHyInfra) [1], traceability for liquefied hydrogen flow measurements is developed by a three-pronged approach: (I) assessment of transferability of water and LNG calibrations to LH2 conditions; (II) cryogenic Laser Doppler Velocimetry (LDV) adapted to LH2 flow applications; (III) assessment of transferability of water, liquefied nitrogen, and liquefied helium calibrations in the vaporisation method to LH2 conditions. In this paper the initial MetHyInfra project results are presented comprising: (I) description of LH2 flow meters, water and LNG calibration results, analytical model prediction statements of uncertainty at LH2 conditions when calibration is performed under ambient conditions, finite element numerical modelling analysis of various thermal effects affecting CFMs at LH2 conditions, (II) design modifications of cryogenic LDV to ensure operability at LH2 conditions, (III) description of the vaporisation standard. It was found that obtaining a definite quantitative number of liquefied hydrogen flow measurement uncertainty from the analytical model is challenging for a variety of reasons.
This paper gives an overview of "The Joint Research Project (JRP) 20IND11 "Metrology infrastructure for high-pressure gas and liquified hydrogen flows" (MetHyInfra) ", the challenges to tackle and the strategy to deal with these challenges. It will outline how this project will lead to a state of art for hydrogen quantity measurement. The paper is connected to four other FLOMEKO submissions, which deal with the latest outputs from the project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.