Data collected from centralised and decentralised sewage treatment plants throughout Sydney's drinking water catchments was used to calculate the relative catchment loads of Cryptosporidium, enteric viruses, nitrogen and phosphorus for an initial screening assessment. Loads were assessed at median and 90 percentile values for expected and worst-cases scenarios. The expected scenario in the Sydney drinking water catchments is that decentralised systems (servicing 32,800 people) provide similar total loads to centralised systems (serving 70% of the catchment population) for total phosphorus (37,090 kg.y-1), Cryptosporidium (1011 oocysts.y-1) and enteric viruses (9.1 × 1013 y-1), but higher loads of total nitrogen (237,610 vs. 136,740 kg.y-1). Decentralised systems, however, were predicted to have higher loads in the worst-case scenario with 620,620 kg.y-1 TN, 82,040 kg.y-1 TP, 7.3 × 1013Cryptosporidium oocysts.y-1 and 9 × 1015 enteric viruses per year. Greater load variability was experienced with decentralised systems, which presumably reflects less reliability in their current operation and maintenance. Overall, catchment water quality is therefore not only affected by sewage disposal methods, but also failure issues. Decentralised system disposal to land may afford a degree of mitigation that can be enhanced, if the degree of failure is reduced.
The quality of effluent from an on-site sewage treatment system is a critical factor in designing the disposal area and, hence, ensuring the sustained performance of the system. Contaminant concentrations in effluent are typically specified in regulatory guidelines or standards; however, the accuracy of these guideline values are brought into question due to the poor performance of septic tanks and the high failure rates of disposal systems reported here and elsewhere. Results from studies of septic tank effluent quality indicated that the effluent is of poorer quality than currently suggested by guidelines. Aerated wastewater treatment systems were found to perform to accreditation guidelines; however, insufficient nutrient data is presently available to assess nutrient loads. It is proposed that the 80th percentile of system performance be adopted as the design value for sizing effluent disposal areas to minimise failure associated with overloading. For septic tanks this equates to 660 mg L(-1) SS, 330 mg L(-1) BOD, 250 mg L(-1) TN and 36 mg L(-1) TP.
Pathogens and nutrients released from on-site sewage systems represent a risk to surface and ground water quality, particularly where there are sensitive receiving waters such as in drinking water catchments. Buffer zones between on-site systems and waterways are one barrier used to protect water quality. The increased time and distance they provide increases the opportunities for the effluent purification functions of the soil to occur. A risk management model is proposed to assess the efficacy of the buffer zones in Sydney's drinking water catchments. The model is the basis for the development of performance based setback distances for on-site systems from waterways, and incorporates stochastic analysis of pathogen and nutrient transport in the environment and consideration of the effluent quality variability from on-site systems. Catchment-scale integration of contaminant transport is employed to facilitate a risk assessment of on-site systems. The risk management model also allows for the impact of on-site system management and maintenance on catchment water quality to be assessed through scenario building and feedback mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.