Background Awake prone positioning (awake-PP) in non-intubated coronavirus disease 2019 (COVID-19) patients could avoid endotracheal intubation, reduce the use of critical care resources, and improve survival. We aimed to examine whether the combination of high-flow nasal oxygen therapy (HFNO) with awake-PP prevents the need for intubation when compared to HFNO alone. Methods Prospective, multicenter, adjusted observational cohort study in consecutive COVID-19 patients with acute respiratory failure (ARF) receiving respiratory support with HFNO from 12 March to 9 June 2020. Patients were classified as HFNO with or without awake-PP. Logistic models were fitted to predict treatment at baseline using the following variables: age, sex, obesity, non-respiratory Sequential Organ Failure Assessment score, APACHE-II, C-reactive protein, days from symptoms onset to HFNO initiation, respiratory rate, and peripheral oxyhemoglobin saturation. We compared data on demographics, vital signs, laboratory markers, need for invasive mechanical ventilation, days to intubation, ICU length of stay, and ICU mortality between HFNO patients with and without awake-PP. Results A total of 1076 patients with COVID-19 ARF were admitted, of which 199 patients received HFNO and were analyzed. Fifty-five (27.6%) were pronated during HFNO; 60 (41%) and 22 (40%) patients from the HFNO and HFNO + awake-PP groups were intubated. The use of awake-PP as an adjunctive therapy to HFNO did not reduce the risk of intubation [RR 0.87 (95% CI 0.53–1.43), p = 0.60]. Patients treated with HFNO + awake-PP showed a trend for delay in intubation compared to HFNO alone [median 1 (interquartile range, IQR 1.0–2.5) vs 2 IQR 1.0–3.0] days (p = 0.055), but awake-PP did not affect 28-day mortality [RR 1.04 (95% CI 0.40–2.72), p = 0.92]. Conclusion In patients with COVID-19 ARF treated with HFNO, the use of awake-PP did not reduce the need for intubation or affect mortality.
Background Although COVID-19 has greatly affected many low-income and middle-income countries, detailed information about patients admitted to the intensive care unit (ICU) is still scarce. Our aim was to examine ventilation characteristics and outcomes in invasively ventilated patients with COVID-19 in Argentina, an upper middle-income country. Methods In this prospective, multicentre cohort study (SATICOVID), we enrolled patients aged 18 years or older with RT-PCR-confirmed COVID-19 who were on invasive mechanical ventilation and admitted to one of 63 ICUs in Argentina. Patient demographics and clinical, laboratory, and general management variables were collected on day 1 (ICU admission); physiological respiratory and ventilation variables were collected on days 1, 3, and 7. The primary outcome was all-cause in-hospital mortality. All patients were followed until death in hospital or hospital discharge, whichever occurred first. Secondary outcomes were ICU mortality, identification of independent predictors of mortality, duration of invasive mechanical ventilation, and patterns of change in physiological respiratory and mechanical ventilation variables. The study is registered with ClinicalTrials.gov , NCT04611269 , and is complete. Findings Between March 20, 2020, and Oct 31, 2020, we enrolled 1909 invasively ventilated patients with COVID-19, with a median age of 62 years [IQR 52–70]. 1294 (67·8%) were men, hypertension and obesity were the main comorbidities, and 939 (49·2%) patients required vasopressors. Lung-protective ventilation was widely used and median duration of ventilation was 13 days (IQR 7–22). Median tidal volume was 6·1 mL/kg predicted bodyweight (IQR 6·0–7·0) on day 1, and the value increased significantly up to day 7; positive end-expiratory pressure was 10 cm H 2 O (8–12) on day 1, with a slight but significant decrease to day 7. Ratio of partial pressure of arterial oxygen (PaO 2 ) to fractional inspired oxygen (FiO 2 ) was 160 (IQR 111–218), respiratory system compliance 36 mL/cm H 2 O (29–44), driving pressure 12 cm H 2 O (10–14), and FiO 2 0·60 (0·45–0·80) on day 1. Acute respiratory distress syndrome developed in 1672 (87·6%) of patients; 1176 (61·6%) received prone positioning. In-hospital mortality was 57·7% (1101/1909 patients) and ICU mortality was 57·0% (1088/1909 patients); 462 (43·8%) patients died of refractory hypoxaemia, frequently overlapping with septic shock (n=174). Cox regression identified age (hazard ratio 1·02 [95% CI 1·01–1·03]), Charlson score (1·16 [1·11–1·23]), endotracheal intubation outside of the ICU (ie, before ICU admission; 1·37 [1·10–1·71]), vasopressor use on day 1 (1·29 [1·07–1·55]), D-dimer concentration (1·02 [1·01–1·03]), PaO 2 /FiO ...
COVID-19 has overloaded national health services worldwide. Thus, early identification of patients at risk of poor outcomes is critical. Our objective was to analyse SARS-CoV-2 RNA detection in serum as a severity biomarker in COVID-19. Retrospective observational study including 193 patients admitted for COVID-19. Detection of SARS-CoV-2 RNA in serum (viremia) was performed with samples collected at 48–72 h of admission by two techniques from Roche and Thermo Fischer Scientific (TFS). Main outcome variables were mortality and need for ICU admission during hospitalization for COVID-19. Viremia was detected in 50–60% of patients depending on technique. The correlation of Ct in serum between both techniques was good (intraclass correlation coefficient: 0.612; p < 0.001). Patients with viremia were older (p = 0.006), had poorer baseline oxygenation (PaO2/FiO2; p < 0.001), more severe lymphopenia (p < 0.001) and higher LDH (p < 0.001), IL-6 (p = 0.021), C-reactive protein (CRP; p = 0.022) and procalcitonin (p = 0.002) serum levels. We defined "relevant viremia" when detection Ct was < 34 with Roche and < 31 for TFS. These thresholds had 95% sensitivity and 35% specificity. Relevant viremia predicted death during hospitalization (OR 9.2 [3.8–22.6] for Roche, OR 10.3 [3.6–29.3] for TFS; p < 0.001). Cox regression models, adjusted by age, sex and Charlson index, identified increased LDH serum levels and relevant viremia (HR = 9.87 [4.13–23.57] for TFS viremia and HR = 7.09 [3.3–14.82] for Roche viremia) as the best markers to predict mortality. Viremia assessment at admission is the most useful biomarker for predicting mortality in COVID-19 patients. Viremia is highly reproducible with two different techniques (TFS and Roche), has a good consistency with other severity biomarkers for COVID-19 and better predictive accuracy.
High levels of preoperative and postoperative NT-proBNP are predictors of cardiovascular complications, including all-cause mortality, during the first 30 days after noncardiac surgery in adults with cardiovascular risk factors.
A biomarker is a molecule that can be measured in a biological sample in an objective, systematic, and precise way, whose levels indicate whether a process is normal or pathological. Knowing the most important biomarkers and their characteristics is the key to precision medicine in intensive and perioperative care. Biomarkers can be used to diagnose, in assessment of disease severity, to stratify risk, to predict and guide clinical decisions, and to guide treatments and response to them. In this review, we will analyze what characteristics a biomarker should have and how to ensure its usefulness, and we will review the biomarkers that in our opinion can make their knowledge more useful to the reader in their clinical practice, with a future perspective. These biomarkers, in our opinion, are lactate, C-Reactive Protein, Troponins T and I, Brain Natriuretic Peptides, Procalcitonin, MR-ProAdrenomedullin and BioAdrenomedullin, Neutrophil/lymphocyte ratio and lymphopenia, Proenkephalin, NefroCheck, Neutrophil gelatinase-associated lipocalin (NGAL), Interleukin 6, Urokinase-type soluble plasminogen activator receptor (suPAR), Presepsin, Pancreatic Stone Protein (PSP), and Dipeptidyl peptidase 3 (DPP3). Finally, we propose an approach to the perioperative evaluation of high-risk patients and critically ill patients in the Intensive Care Unit (ICU) based on biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.