Receiver algorithms which combine belief propagation (BP) with the mean field (MF) approximation are well-suited for inference of both continuous and discrete random variables. In wireless scenarios involving detection of multiple signals, the standard construction of the combined BP-MF framework includes the equalization or multi-user detection functions within the MF subgraph. In this paper, we show that the MF approximation is not particularly effective for multi-signal detection. We develop a new factor graph construction for application of the BP-MF framework to problems involving the detection of multiple signals. We then develop a low-complexity variant to the proposed construction in which Gaussian BP is applied to the equalization factors. In this case, the factor graph of the joint probability distribution is divided into three subgraphs: (i) a MF subgraph comprised of the observation factors and channel estimation, (ii) a Gaussian BP subgraph which is applied to multi-signal detection, and (iii) a discrete BP subgraph which is applied to demodulation and decoding. Expectation propagation is used to approximate discrete distributions with a Gaussian distribution and links the discrete BP and Gaussian BP subgraphs. The result is a probabilistic receiver architecture with strong theoretical justification which can be applied to multi-signal detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.