We analyze star formation (SF) as a function of stellar mass (M ⋆ ) and redshift z in the All Wavelength Extended Groth Strip International Survey (AEGIS). For 2905 field galaxies, complete to 10 10 (10 10.8 )M ⊙ at z < 0.7(1), with Keck spectroscopic redshifts out to z = 1.1, we compile SF rates (SFR) from emission lines, GALEX, and Spitzer MIPS 24µm photometry, optical-NIR M ⋆ measurements, and HST morphologies. Galaxies with reliable signs of SF form a distinct "main sequence (MS)", with a limited range of SFR at a given M ⋆ and z (1σ ±0.3 dex), and log(SFR) approximately proportional to log(M ⋆ ). The range of log(SFR) remains constant to z > 1, while the MS as a whole moves to higher SFR as z increases. The range of SFR along the MS constrains the amplitude of episodic variations of SF, and the effect of mergers on SFR. Typical galaxies spend ∼ 67(95)% of their lifetime since z = 1 within a factor of 2(4) of their average SFR at a given M ⋆ and z. The dominant mode of the evolution of SF since z ∼ 1 is apparently a gradual decline of the average SFR in most individual galaxies, not a decreasing frequency of starburst episodes, or a decreasing factor by which SFR are enhanced in starbursts. LIRGs at z ∼ 1 seem to mostly reflect the high SFR typical for massive galaxies at that epoch. The smooth MS may reflect that the same set of few physical processes governs star formation prior to additional quenching processes. A gradual process like gas exhaustion may play a dominant role.
Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. It has previously been suspected that dwarf galaxies may not be isotropically distributed around our Galaxy, because several are correlated with streams of H I emission, and may form coplanar groups. These suspicions are supported by recent analyses. It has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence of a planar subgroup of satellites in the Andromeda galaxy (M 31), comprising about half of the population. The structure is at least 400 kiloparsecs in diameter, but also extremely thin, with a perpendicular scatter of less than 14.1 kiloparsecs. Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and with the vector between the Milky Way and Andromeda.
We report detailed chemical abundance analysis of 27 RGB stars towards the Galactic bulge in Baade's Window for elements produced by massive stars: O, Na, Mg, Al, Si, Ca and Ti. All of these elements are overabundant in the bulge relative to the disk, indicating that the bulge is enhanced in Type II supernova ejecta and most likely formed more rapidly than the disk.Our [Mg/Fe] ratios, confirmed by [Al/Mg], declines much more slowly with [Fe/H] than O, Si, Ca and Ti. The [Mg/Fe] ratio stays above +0.25 dex up to well above solar metallicity. We attribute the rapid decline of [O/Fe] to a metallicity-dependent modulation of the oxygen yield from massive stars, perhaps connected to the Wolf-Reyet phenomenon.The explosive nucleosynthesis alphas, Si, Ca and Ti, relative to Fe, possess identical trends with [Fe/H], consistent with their putative common origin. We note that different behaviors of hydrostatic and explosive alpha elements can be seen in the stellar abundances of stars in Local Group dwarf galaxies. We also attribute the decline of Si,Ca and Ti, relative to Mg, to metallicity-dependent yields for these explosive alpha elements from Type II supernovae. The production of explosive alphas in Type Ia supernovae likely explains the absence of obvious difference between Mg and Si, Ca, Ti trends in the Galactic thin disk.An alternative explanation for the [Mg/
We compare the dust attenuation properties of two samples of galaxies purely selected in the near-ultraviolet (NUV) band (1750-2750Å, λ mean = 2310Å) and in the far-infrared (FIR) at 60 µm . These samples are built using the GALEX
We have analyzed the redshift-dependent fraction of galactic bars over 0:2 < z < 0:84 in 2157 luminous face-on spiral galaxies from the COSMOS 2 deg 2 field. Our sample is an order of magnitude larger than that used in any previous investigation, and is based on substantially deeper imaging data than that available from earlier wide-area studies of high-redshift galaxy morphology. We find that the fraction of barred spirals declines rapidly with redshift. Whereas in the local universe about 65% of luminous spiral galaxies contain bars (SB+SAB), at z $ 0:84 this fraction drops to about 20%. Over this redshift range the fraction of strong bars (SBs) drops from about 30% to under 10%. It is clear that when the universe was half its present age, the census of galaxies on the Hubble sequence was fundamentally different from that of the present day. A major clue to understanding this phenomenon has also emerged from our analysis, which shows that the bar fraction in spiral galaxies is a strong function of stellar mass, integrated color and bulge prominence. The bar fraction in very massive, luminous spirals is about constant out to z $ 0:84, whereas for the low-mass, blue spirals it declines significantly with redshift beyond z ¼ 0:3. There is also a slight preference for bars in bulge-dominated systems at high redshifts that may be an important clue toward the coevolution of bars, bulges, and black holes. Our results thus have important ramifications for the processes responsible for galactic downsizing, suggesting that massive galaxies matured early in a dynamical sense, and not just as a result of the regulation of their star formation rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.