Zn-Al-Cu alloys are characterized by advantageous set of functional quality futures: tribological, strength, corrosion. They are used as an alternative material for bronze, cast iron and aluminum alloys in bearings and as a structural material. Properties of Zn-Al-Cu can be improved by partial or total replacement of copper with silicon and addition of rare - earth elements. Previous studies of the current authors have shown a significant effect of cooling rate on the structure of the ZnAl22Cu3 alloy. The presence of pores and significant differences in porosity between samples slowly and fast cooled has been found. The aim of this study was to determine the effect of cooling conditions on the pore formation in ZnAl22Cu3 alloy. The article presents the structure of the slowly and fast cooled alloy. Structural examinations were carried out on samples taken from the top, center and bottom of the ingot. In order to determine the microstructure metallographic tests were carried out using optical microscope and electron scanning microscope. Through EDS X-ray spectrometry quantitative analysis of characteristic microareas was performed as well. In order to assess the morphological characteristics of the pore a computer program Met-Ilo developed in the Department of Materials Science, Silesian University of Technology has been used. Changes of the volume fraction and the average area on a flat cross section in particular areas of the ingot were analyzed quantitatively.
In the paper, results of impact bending tests of a high-manganese steel of X30MnAlSi26-4-3 grade are presented. The tests were carried out using a flywheel machine, suitable for dynamic tensile tests and impact bending tests in the range of linear velocity of the forcing element from 5 ÷ 40 m/s. The obtained test results were compared with the results of impact resistance of the studied steel determined using Charpy machine. Structural investigations were carried out using light microscope and scanning transmission electron microscopy. Creating a mechanical twins at different strain rates was analyzed. The surfaces of fractures formed in the break point during bending tests were analyzed, and they indicate a presence of mixed transcrystalline fractures with a predominance of plastic fractures. Substructure studies revealed the presence of mechanical twinning induced in a high strain rate for the X30MnAlSi26-4-3 steel.
Zn-Al-Cu alloys are used as an alternative material for bronze, cast iron and aluminum alloys in bearings and as construction material. Advantageous results brings of their application for bearings exposed to high loads. One of the factors determining the possible applications of Zn-Al-Cu alloys is their resistance to electrochemical corrosion. In literature can be found information on the corrosion resistance of Zn-Al-Cu alloys. There have been no comprehensive studies on the influence of casting conditions and modifications of chemical composition on the structure and corrosion resistance. The purpose of the experiments was to determine the structure and corrosion resistance of cast Zn-40%Al-2%Cu alloy. The scope of the experiments included X-ray phase analysis, potentiodynamic and potentiostatic tests, surface condition examinations and alloy structure characterization both before and after corrosion. The Zn40Al2Cu alloy is characterized by a dendritic structure, consisting of solid solutions of Al, Zn-Al and Zn and the CuZn5 phase. A corrosive environment affects the structure of the subsurface zone of the Zn40Al2Cu alloy to a depth of 60 to 130 μm, where a decrease of zinc content and an increase of aluminum content are observed.
Institute of Materials Science at Silesian University of Technology since 6 years conducts researches to learn about the new dedicated for automotive, railway and military industries. Some of these materials belong to the group of AHS steels, characterized by the twinning induced plasticity (TWIP) effect. It is a new type of steel possessing both a high strength and a great plastic elongation, and an ideal uniform work hardening behaviour. It is therefore a good candidate for deep drawing applications in the automobile and railway industries. In the paper the of the three grades of high-manganese steels of was studied in 3.5% NaCl solution and in an “acid rain” solution with pH=3.5 environments using polarization experiments. The results of corrosion tests and analysis of show that a higher polarisation resistance and lower values of corrosion current density are observed for all studied steels in 3.5% NaCl solution. Spontaneous passivation ability has been shown only for one grade of high-manganese steel in 3.5% NaCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.