Sexual selection drives elaboration in animal displays used for competition and courtship, but this process is opposed by morphological constraints on signal design. How do interactions between selection and constraint shape display evolution? One possibility is that sexual selection continues exaggeration under constraint by operating differentially on each signal component in complex, modular displays. This is seldom studied on a phylogenetic scale, but we address the issue herein by studying macroevolutionary patterning of woodpecker drum displays. These territorial displays are produced when an individual rapidly hits its bill on a hard surface, and drums vary across species in the number of beats included (length) and the rate of drumbeat production (speed). We report that species body size limits drum speed, but not drum length. As a result of this biomechanical constraint, there is less standing variation in speed than length. We also uncover a positive relationship between sexual size dimorphism and the unconstrained trait (length), but with no effect on speed. This suggests that when morphology limits the exaggeration of one component, sexual selection instead exaggerates the unconstrained trait. Modular displays therefore provide the basis for selection to find novel routes to phenotypic elaboration after previous ones are closed.
Objectives: Suggested therapeutic options for Multisystem Inflammatory Syndrome in Children (MIS-C) include intravenous immunoglobulins (IVIG) and steroids. Prior studies have shown the benefit of combination therapy with both agents on fever control or the resolution of organ dysfunction. The primary objective of this study was to analyze the impact of IVIG and steroids on hospital and ICU length of stay (LOS) in patients with MIS-C associated with Coronavirus Disease 2019 (COVID-19).
Many species perform elaborate physical displays to court mates and compete with rivals, but the biomechanical mechanisms underlying such behavior are poorly understood. We address this issue by studying the neuromuscular origins of display behavior in a small tropical passerine bird, the golden-collared manakin (). Males of this species court females by dancing around the forest floor and rapidly snapping their wings together above their back. Using radio-telemetry, we collected electromyographic (EMG) recordings from the three main muscles that control avian forelimb movement, and found how these different muscles are activated to generate various aspects of display behavior. The muscle that raises the wing (supracoracoideus, SC) and the primary muscle that retracts the wing (scapulohumeralis caudalis, SH) were activated during the wing-snap, whereas the pectoralis (PEC), the main wing depressor, was not. SC activation began before wing elevation commenced, with further activation occurring gradually. By contrast, SH activation was swift, starting soon after wing elevation and peaking shortly after the snap. The intensity of this SH activation was comparable to that which occurs during flapping, whereas the SC activation was much lower. Thus, light activation of the SC likely helps position the wings above the back, so that quick, robust SH activation can drive these appendages together to generate the firecracker-like snap sonation. This is one of the first looks at the neuromuscular mechanisms that underlie the actuation of a dynamic courtship display, and it demonstrates that even complex, whole-body display movements can be studied with transmitter-aided EMG techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.