New regenerative materials and approaches need to be assessed through reliable and comparable methods for rapid translation to the clinic. There is a considerable need for proven in vitro assays that are able to reduce the burden on animal testing, by allowing assessment of biomaterial utility predictive of the results currently obtained through in vivo studies. The purpose of this multicentre review was to investigate the correlation between existing in vitro results with in vivo outcomes observed for a range of biomaterials. Members from the European consortium BioDesign, comprising 8 universities in a European multicentre study, provided data from 36 in vivo studies and 47 in vitro assays testing 93 different biomaterials. The outcomes of the in vitro and in vivo experiments were scored according to commonly recognised measures of success relevant to each experiment. The correlation of in vitro with in vivo scores for each assay alone and in combination was assessed. A surprisingly poor correlation between in vitro and in vivo assessments of biomaterials was revealed indicating a clear need for further development of relevant in vitro assays. There was no significant overall correlation between in vitro and in vivo outcome. The mean in vitro scores revealed a trend of covariance to in vivo score with 58 %. The inadequacies of the current in vitro assessments highlighted here further stress the need for the development of novel approaches to in vitro biomaterial testing and validated pre-clinical pipelines.
For many years orthopedic implants were developed for patients with good bone stock. Recently it has become clear that these implants have a decreased performance when implanted in bone with low density, such as in osteoporosis. Reduced performance in osteoporotic bone is not unexpected because of the reduced quality of the peri-implant bone and the reduced bone-implant contact area. Nevertheless, the precise failure mechanisms are not well understood. Although experimental testing is considered the gold standard to determine implant fixation, it is hampered by many limitations. Computational models could potentially aid in obtaining a better understanding of implant fixation as they allow analyzing the mechanical interaction between implants and peri-implant tissues. This article provides a review of the existing finite element models of small endosseous implants in bone. The aim is to analyze the potential of such models to aid the understanding of implant failure mechanisms with the goal of improving implant performance in low quality bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.