Olivine type LiFePO4 has great advantages for Li-ion batteries due to its non-toxicity, high safety, and good cycle life performance. However, its low-rate capability and low energy density make some challenges for this LiFePO4. Several methods like doping with transition metals were used, and Mn ion was used in this work to improve the overall electrochemical properties. LiMn x Fe1-x PO4 is promising cathode material owing to high voltage, structural and chemical stability. However, the electrochemical performance of these materials depends on phases and structures obtained from synthesis. In this work, the effect of solid-state reaction conditions, including calcination temperature and duration, on morphology, structure, and electrochemical properties of LiMn x Fe1-x PO4 cathode materials with the composition of x = 0.5 was investigated. The morphology, crystallography and local structure of the synthesized materials were examined by field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD) and Fourier-transform infrared spectrometer (FTIR), respectively. The surface area was also determined by the Brunauer-Emmett-Teller (BET) model. The effect of calcination temperature and reaction time upon the morphology, structures of the synthesized cathode materials were studied and discussed. The results could be essential for further development and employment of LiMn x Fe1-x PO4 in Li-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.