-In this article the use of somatic cell counts for monitoring udder health and milk quality is discussed. Somatic cell count dynamics at quarter, cow, herd and population level are discussed and illustrated with examples. Quarter and cow somatic cell counts directly represent the inflammatory status of the mammary gland. Herd and population somatic cell count are related to the inflammatory process in individual cows but much more reflect the udder health status of the herd and the quality of the raw milk in the herd and the population. Application of monitoring tools in herd health management are illustrated using a case study. Understanding infection dynamics requires precise longitudinal data. Monitoring tools are required to find the areas of risk in the herd. It is inevitable that more complete udder health programs and monitoring systems are to be developed and implemented. These programs are necessarily dynamic and complex. Implementation of complete udder health programs should be accompanied by research efforts to further fine-tune these complete udder health control and monitoring programs. somatic cell count / mastitis / milk quality / monitoring / epidemiology
Our objective was to estimate the effects of the first occurrence of pathogen-specific clinical mastitis (CM) on milk yield in 3071 dairy cows in 2 New York State farms. The pathogens studied were Streptococcus spp.,Staphylococcus aureus, Staphylococcus spp., Escherichia coli, Klebsiella spp., Arcanobacterium pyogenes, other pathogens grouped together, and "no pathogen isolated." Data were collected from October 1999 to July 2001. Milk samples were collected from cows showing signs of CM and were sent to the Quality Milk Production Services laboratory at Cornell University for microbiological culture. The SAS statistical procedure PROC MIXED, with an autoregressive covariance structure, was used to quantify the effect of CM and several other control variables (herd, calving season, parity, month of lactation, J-5 vaccination status, and other diseases) on weekly milk yield. Separate models were fitted for primipara and multipara, because of the different shapes of their lactation curves. To observe effects of mastitis, milk weights were divided into several periods both pre- and postdiagnosis, according to when they were measured in relation to disease occurrence. Another category contained cows without the type of CM being modeled. Because all pathogens were modeled simultaneously, a control cow was one without CM. Among primipara, Staph. aureus, E. coli, Klebsiella spp., and "no pathogen isolated" caused the greatest losses. Milk yield generally began to drop 1 or 2 wk before diagnosis; the greatest loss occurred immediately following diagnosis. Mastitic cows often never recovered their potential yield. Among older cows, Streptococcus spp., Staph. aureus, A. pyogenes, E. coli, and Klebsiella spp. caused the most significant losses. Many multipara that developed CM were actually higher producers before diagnosis than their nonmastitic herd-mates. As in primipara, milk yield in multipara often began to decline shortly before diagnosis; the greatest loss occurred immediately following diagnosis. Milk loss persisted until at least 70 d after diagnosis for Streptococcus spp., Klebsiella spp., and A. pyogenes. The tendency for higher producing cows to contract CM may mask its impact on cow health and production. These findings provide dairy producers with more information on which pathogen-specific CM cases should receive treatment and how to manage these cows, thereby reducing CM impact on cow well being and profitability.
Milk samples were collected from 108,312 dairy cows during 1601 farm visits made between January 1991 and June 1995. The herd visits were made by personnel from the Central Laboratory of the Quality Milk Promotion Services at Cornell University (Ithaca, NY) to farms located in central New York and northern Pennsylvania. Dairy Herd Improvement Association records were available for 32,978 cows in 327 herds. Intramammary infections, as defined by positive milk cultures, were present in 48.5% of all cows and in 36.3% of cows in herds enrolled in the Dairy Herd Improvement Association. Over 75% of the intramammary infections were caused by Streptococcus agalactiae, Streptococcus spp. other than Strep. agalactiae, Staphylococcus aureus, and coagulase-negative staphylococci. Mean days in milk at the time of diagnosis, linear score of the somatic cell count, cost of milk loss per lactation, and milk production effects were calculated for 24 etiologic agents of bovine mastitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.