Mitogen-activated protein kinase (MAPK) cascades support the flow of extracellular signals to intracellular target molecules and ultimately drive a diverse array of physiological functions in cells, tissues, and organisms by interacting with other proteins. Yet, our knowledge of the global physical MAPK interactome in plants remains largely fragmented. Here, we utilized the yeast twohybrid system and coimmunoprecipitation, pull-down, bimolecular fluorescence complementation, subcellular localization, and kinase assay experiments in the model crop rice (Oryza sativa) to systematically map what is to our knowledge the first plant MAPK-interacting proteins. We identified 80 nonredundant interacting protein pairs (74 nonredundant interactors) for rice MAPKs and elucidated the novel proteome-wide network of MAPK interactors. The established interactome contains four membrane-associated proteins, seven MAP2Ks (for MAPK kinase), four MAPKs, and 59 putative substrates, including 18 transcription factors. Several interactors were also validated by experimental approaches (in vivo and in vitro) and literature survey. Our results highlight the importance of OsMPK1, an ortholog of tobacco (Nicotiana benthamiana) salicyclic acid-induced protein kinase and Arabidopsis (Arabidopsis thaliana) AtMPK6, among the rice MAPKs, as it alone interacts with 41 unique proteins (51.2% of the mapped MAPK interaction network). Additionally, Gene Ontology classification of interacting proteins into 34 functional categories suggested MAPK participation in diverse physiological functions. Together, the results obtained essentially enhance our knowledge of the MAPK-interacting protein network and provide a valuable research resource for developing a nearly complete map of the rice MAPK interactome.
Secreted proteins control a multitude of biological and physiological processes in multicellular organisms such as plants. Identification of secreted proteins in reference plants like Arabidopsis and rice under normal growth conditions and adverse environmental conditions will help better understand the secretory pathways. Here, we have performed a systematic in planta and in vitro analyses of proteins secreted by rice leaves (in planta) and seed callus suspension-cultured cells (SCCs; in vitro), respectively, using a combination of biochemical and two-dimensional gel electrophoresis (2-DGE) coupled with liquid chromatography mass spectrometry analyses. Secreted proteins prepared from either leaves or SCCs medium were essentially free from contamination of intracellular proteins as judged by biochemical and Western blot analyses. 2-DGE analyses of secreted proteins collectively identified 222 protein spots with only 6 protein spots common to both in planta and in vitro derived data sets. Data were used to establish high-resolution and high-density 2-D gel reference maps for both in planta and in vitro secreted proteins. Identified proteins belonged to 11 (in planta) and 6 (in vitro) functional classes. Proteins involved in carbon metabolism (33%) and cell wall metabolism having plant defense mechanism (18%) were highly represented in the in planta secreted proteins accounting for 51% of total identified proteins, whereas proteins of cell wall metabolism having plant defense mechanism (64%) were predominant in the in vitro secreted proteins. Interestingly, secreted proteins possessing signal peptides were significantly lower in an in planta (27%) prepared secreted protein population than in vitro (76%) as predicted by SignalP prediction tool, implying the notion that plant might possess yet unidentified secretory pathway(s) in addition to the classical endoplasmic reticulum/Golgi pathway. Taken together, this systematic study provides evidence for (i) significant difference in protein population secreted in planta and in vitro suggesting both approaches are complementary, (ii) identification of many novel and previously known secreted proteins, and (iii) the presence of large number of functionally diverse proteins secreted in planta and in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.