Multi-unit electrophysiological mapping was used to establish the area of the left- and right-hemisphere auditory cortex (AC) of the mouse and to characterize various fields within the AC. The AC of the left hemisphere covered a significantly larger (factor of 1.30) area compared to that of the right side. Based on best-frequency (BF) maps and other neuronal response characteristics to tone and noise bursts, five fields (primary auditory field, anterior auditory field, second auditory field, ultrasonic field, dorsoposterior field) and two small non-specified areas could be delimited on both hemispheres. The relative sizes of these fields and areas were similar on both sides. The primary and anterior auditory fields were tonotopically organized with counter running frequency gradients merging in the center of the AC. These fields covered BF ranges up to about 45 kHz. Higher BFs up to about 70 kHz were represented non-tonotopically in the separate ultrasonic field, part of which may be considered as belonging to the primary field. The dorsoposterior and second auditory fields were non-tonotopically organized and neurons had special response properties. These characteristics of the mouse AC were compared with auditory cortical maps of other mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.