This study was designed to investigate the possible genotoxic and teratogenic actions of diphenyl (DP), diphenyl ether (DPE), and their eutectic mixture, in a comparative approach including different test systems. Two microbial systems and a metazoan model were used: (1) diploid D7 strain of Saccharomyces cerevisiae; (2) Salmonella typhimurium strains TA100, TA98, TA1535, TA1537, TA1538, TA1532, TA2636; and (3) sea urchins (Paracentrotus lividus and Sphearechinus granularis). Both compounds resulted in severe toxicity in all of test organisms at levels greater than or equal to 10(-5) M (approximately 2 ppm). DP caused genetic effects in yeast with and without activating system, while the two chemicals appeared to be ineffective in Salmonella up to toxic levels. The action of DP and DPE on sea urchins resulted in developmental defects and mitotic abnormalities, following exposure of embryos or by pretreatment of sperm or eggs. In this system DPE appeared to be more effective than DP by about one order of magnitude (minimal active concentrations: 10(-5) M vs 10(-4) M). The eutectic mixture, industrially used as a heat transfer medium, was tested in its virgin and used form, for genotoxicity and embryotoxicity. The latter appeared to be more effective than the virgin eutectic. This increase in the embryo- and genotoxicity of the used eutectic may be related to the appearance of newly formed compounds in the heat transfer process. These compounds have been separated by high-pressure liquid chromatography and detected by fluorimetry.
Saliva is an interesting, non-conventional, valuable diagnostic fluid. It can be collected using standardized sampling device; thus, its sampling is easy and non-invasive, it contains a variety of organic metabolites that reflect blood composition. The aim of this study was to validate a user-friendly method for the simultaneous determination of low molecular weight metabolites in saliva. We have optimized and validated a high throughput, direct, low-cost reversed phase liquid chromatographic method with diode array detection method without any pre- or post-column derivatization. We indexed salivary biomolecules in 35 whole non-stimulated saliva samples collected in 8 individuals in different days, including organic acids and amino acids and other carbonyl compounds. Among these, 16 whole saliva samples were collected by a single individual over three weeks before, during and after treatment with antibiotic in order to investigate the dynamics of metabolites. The concentrations of the metabolites were compared with the literature data. The multianalyte method here proposed requires a minimal sample handling and it is cost-effectiveness as it makes possible to analyze a high number of samples with basic instrumentation. The identification and quantitation of salivary metabolites may allow the definition of potential biomarkers for non-invasive “personal monitoring” during drug treatments, work out, or life habits over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.