In a previous study of the changes in glomerular structure in the isolated perfused kidney (IPK), perfusion at high pressures lead to an enlargement of the glomerular tuft and to the formation of giant capillaries. The present paper analyzes the morphological and dimensional changes of the peripheral glomerular capillary wall under these circumstances. The enlargement of glomerular capillaries at high pressure perfusion was accompanied by a considerable increase in the surface area of the glomerular basement membrane (GBM). The podocyte as well as the endothelial layer perfectly adapted to the acute challenge in covering increasing GBM area. The interdigitating foot process pattern showed up in an ideal arrangement. The capillary wall expansion was associated with a significant increase in total pericapillary slit area. Compared to the corresponding low pressure groups (65 mm Hg, without and with the application of vasodilators) the slit area increased in the high pressure groups (105 mm Hg, without and with vasodilator) by approximately 50 and 75%, respectively. This increase of the slit area was mainly due to an increase in slit length; the slit width remained fairly constant. These findings indicate that the pericapillary wall is distensible based on a distensibility of the GBM. We suggest that the contractile apparatus of podocyte foot processes regulates the expansion of the GBM.
Background: Pancreatic cancer (PaCa) is a fatal human cancer due to its exceptional resistance to all current anticancer therapies. The cytoprotective enzyme heme oxygenase-1 (HO-1) is significantly overexpressed in PaCa and seems to play an important role in cancer resistance to anticancer treatment. The inhibition of HO-1 sensitized PaCa cells to chemo-and radiotherapy in vitro.
Thin sections and freeze-fracture replicas were used to investigate the ultrastructural changes associated with renin secretion from the juxtaglomerular part of the afferent arteriole of male mice. Adrenalectomized animals in which renin secretion was stimulated by furosemide application and bleeding were also studied. Exocytosis of mature electron-dense granules was found in all experimental groups. Before extrusion, the region of granule facing the cell membrane changed, with vesicular and/or stacked membrane-like profiles and a small local protrusion of the granule membrane appearance of. Concomitantly, punctuate sites of fusion between the cell and granule membranes were observed. Later, unaltered amorphous, and altered membrane-like granule content was released from omega-shaped cavities into the extracellular space. In stimulated animals the alteration and extrusion of several closely apposed granules was reminiscent of compound exocytosis. Coated pits were frequently seen, suggesting specific retrieval of the former granule membrane. The collapsing silhouette of a depleted granule very rarely took the form of a saccule whose narrow membrane-bounded neck was continuous with the extracellular space. Observed were two additional events by which active and inactive renin may be released. Small electron-lucent vacuoles of undetermined origin fused with the cell membrane and, in stimulated kidneys, some epithelioid cell processes disintegrated. However, the interpretation of the related ultrastructural phenomena was uncertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.