We analyze the dependence of galaxy structure (size and Sersic index) and mode of star formation (Σ SF R and SF R IR /SF R UV ) on the position of galaxies in the SFR versus Mass diagram. Our sample comprises roughly 640000 galaxies at z ∼ 0.1, 130000 galaxies at z ∼ 1, and 36000 galaxies at z ∼ 2. Structural measurements for all but the z ∼ 0.1 galaxies are based on HST imaging, and SFRs are derived using a Herschel-calibrated ladder of SFR indicators. We find that a correlation between the structure and stellar population of galaxies (i.e., a 'Hubble sequence') is already in place since at least z ∼ 2.5. At all epochs, typical star-forming galaxies on the main sequence are well approximated by exponential disks, while the profiles of quiescent galaxies are better described by de Vaucouleurs profiles. In the upper envelope of the main sequence, the relation between the SFR and Sersic index reverses, suggesting a rapid build-up of the central mass concentration in these starbursting outliers. We observe quiescent, moderately and highly star-forming systems to co-exist over an order of magnitude or more in stellar mass. At each mass and redshift, galaxies on the main sequence have the largest size. The rate of size growth correlates with specific SFR, and so does Σ SF R at each redshift. A simple model using an empirically determined SF law and metallicity scaling, in combination with an assumed geometry for dust and stars is able to relate the observed Σ SF R and SF R IR /SF R UV , provided a more patchy dust geometry is assumed for high-redshift galaxies.
We compare multi-wavelength star formation rate (SFR) indicators out to z ∼ 3 in the GOODS-South field. Our analysis uniquely combines U -to-8µm photometry from FIREWORKS, MIPS 24 µm and PACS 70, 100, and 160 µm photometry from the PEP survey, and Hα spectroscopy from the SINS survey. We describe a set of conversions that lead to a continuity across SFR indicators. A luminosityindependent conversion from 24 µm to total infrared luminosity yields estimates of L IR that are in the median consistent with the L IR derived from PACS photometry, albeit with significant scatter. Dust correction methods perform well at low to intermediate levels of star formation. They fail to recover the total amount of star formation in systems with large SF R IR /SF R UV ratios, typically occuring at the highest SFRs (SF R UV +IR 100 M ⊙ /yr) and redshifts (z 2.5) probed. Finally, we confirm that Hα-based SFRs at 1.5 < z < 2.6 are consistent with SF R SED and SF R UV +IR provided extra attenuation towards HII regions is taken into account (A V,neb = A V,continuum /0.44). With the cross-calibrated SFR indicators in hand, we perform a consistency check on the star formation histories inferred from SED modeling. We compare the observed SFR-M relations and mass functions at a range of redshifts to equivalents that are computed by evolving lower redshift galaxies backwards in time. We find evidence for underestimated stellar ages when no stringent constraints on formation epoch are applied in SED modeling. We demonstrate how resolved SED modeling, or alternatively deep UV data, may help to overcome this bias. The age bias is most severe for galaxies with young stellar populations, and reduces towards older systems. Finally, our analysis suggests that SFHs typically vary on timescales that are long (at least several 100 Myr) compared to the galaxies' dynamical time.
Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Deep far-infrared photometric surveys studying galaxy evolution and the nature of the cosmic infrared background are a key strength of the Herschel mission. We describe the scientific motivation for the PACS Evolutionary Probe (PEP) guaranteed time key program and its role within the entire set of Herschel surveys, and the field selection that includes popular multiwavelength fields such as GOODS, COSMOS, Lockman Hole, ECDFS, and EGS. We provide an account of the observing strategies and data reduction methods used. An overview of first science results illustrates the potential of PEP in providing calorimetric star formation rates for high-redshift galaxy populations, thus testing and superseding previous extrapolations from other wavelengths, and enabling a wide range of galaxy evolution studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.