-The objective of this work was to compare ordinary kriging with regression kriging to map soil properties at different depths in a tropical dry forest area in Brazil. The 11 soil properties evaluated were: organic carbon content and stock; bulk density; clay, sand, and silt contents; cation exchange capacity; pH; water retention at field capacity and at permanent wilting point; and available water. Samples were taken from 327 sites at 0.0-0.10, 0.10-0.20, and 0.20-0.40-m depths, in a tropical dry forest area of 102 km 2 .Stepwise linear regression models for particle-size fractions and water retention properties had the best fit. Relief and parent material covariates were selected in 31 of the 33 models (11 properties at three depths) and vegetation covariates in 29 models. Based on external validation, ordinary kriging obtained higher accuracy for 21 out of 33 property x depth combinations, indicating that the inclusion of a linear trend model before kriging does not necessarily improve predictions. Therefore, for similar studies, the geostatistical methods employed should be compared on a case-by-case basis.Index terms: caatinga, digital soil mapping, gamma radiometric survey, geostatistics, pedometrics. Mapeamento de carbono, frações granulométricas e água do solo em Floresta Tropical Seca no BrasilResumo -O objetivo deste trabalho foi comparar krigagem ordinária com regressão-krigagem para mapear atributos do solo, em diferentes profundidades, em área de Floresta Tropical Seca no Brasil. Os 11 atributos do solo avaliados foram: conteúdo e estoque de carbono orgânico; densidade do solo; conteúdos de argila, areia e silte; capacidade de troca catiônica; pH; retenção de água na capacidade de campo e no ponto de murcha permanente; e água disponível. As amostras foram retiradas de 327 locais a 0,0-0,10, 0,10-0,20 e 0,20-0,40 m de profundidade, em área de Floresta Tropical Seca de 102 km 2 . Os modelos de regressão linear "stepwise" tiveram o melhor ajuste para as frações granulométricas e as propriedades de retenção de água. Foram selecionadas covariáveis de relevo e material de origem em 31 dos 33 modelos (11 atributos em três profundidades) e de vegetação em 29 modelos. Com base na validação externa, a krigagem ordinária obteve maior acurácia para 21 das 33 combinações atributo vs. profundidade, o que é indicativo de que a inclusão de um modelo linear de tendência antes da krigagem não necessariamente melhora as predições. Portanto, para estudos semelhantes, os métodos geoestatísticos empregados devem ser comparados caso a caso.Termos para indexação: caatinga, mapeamento digital de solos, levantamento gamarradiométrico, geoestatística, pedometria.
A database with 431 soil profiles of Rio de Janeiro State was used in a research project entitled "Quantifying the magnitude, spatial distribution and organic carbon in soils of Rio de Janeiro State, using quantitative modeling, GIS and database technologies" (Projeto Carbono_RJ, sponsored by FAPERJ-Carlos Chagas Filho Foundation for Research Support in Rio de Janeiro State). These soil data were collected for other purposes and there were only limited soil bulk density data (103), which is needed for estimating soil organic carbon (SOC) stocks. Pedotransfer functions (PTFs) were estimated to be used in the modeling of organic soil carbon of topsoil (0-10 cm), using the scorpan model. The following environmental correlates were used as predictor variables: satellite data (Landsat ETM +), lithology and soil maps, and a DEM and its derivatives. This dataset represents the best organized soil dataset in Brazil and is working as an educational trial for Digital Soil Mapping using a variety of methods for predicting soil classes and their properties. Multilinear analysis and regression-kriging were used to perform the modeling. Seven different models were built and compared through statistical methods. The main difference between the models was the set of predictor variables used to perform them. In general, all models performed well to predict the SOC stock. Nevertheless, model 6 was considered the best one since it presented the smallest AIC and RMSE as it used existing soil information (polygon soil maps) as a predictor variable, in addition to the variables used in the other models. The results obtained with this model were used to map topsoil carbon stock at a spatial resolution of 90 m.
Mapping soil properties, using geostatistical methods in support of precision agriculture and related activities, requires a large number of samples. To reduce soil sampling and measurement time and cost, a combination of field proximal soil sensors was used to predict and map laboratory-measured soil properties in a 3.4-ha pasture field in southeastern Brazil. Sensor soil properties were measured in situ on a 10 × 10-m dense grid (377 samples) using apparent electrical conductivity meters, apparent magnetic susceptibility meter, gamma-ray spectrometer, water content reflectometer, cone penetrometer, and portable X-ray fluorescence spectrometer (pXRF). Soil samples were collected on a 20 × 20-m thin grid (105 samples) and analyzed in the laboratory for organic C, sum of bases, cation exchange capacity, clay content, soil volumetric moisture, and bulk density. Another 25 samples collected throughout the area were also analyzed for the same soil properties and used for independent validation of models and maps. To test whether the combination of sensors enhances soil property predictions, stepwise multiple linear regression (MLR) models of the laboratory soil properties were derived using individual sensor covariate data versus combined sensor data—except for the pXRF data, which were evaluated separately. Then, to test whether a denser grid sample boosted by sensor-based soil property predictions enhances soil property maps, ordinary kriging of the laboratory-measured soil properties from the thin grid was compared to ordinary kriging of the sensor-based predictions from the dense grid, and ordinary cokriging of the laboratory properties aided by sensor covariate data. The combination of multiple soil sensors improved the MLR predictions for all soil properties relative to single sensors. The pXRF data produced the best MLR predictions for organic C content, clay content, and bulk density, standing out as the best single sensor for soil property prediction, whereas the other sensors combined outperformed the pXRF sensor for the sum of bases, cation exchange capacity, and soil volumetric moisture, based on independent validation. Ordinary kriging of sensor-based predictions outperformed the other interpolation approaches for all soil properties, except organic C content, based on validation results. Thus, combining soil sensors, and using sensor-based soil property predictions to increase the sample size and spatial coverage, leads to more detailed and accurate soil property maps.
Abstract. Spatial soil databases can help model complex phenomena in which soils are decisive, for example, evaluating agricultural potential or estimating carbon storage capacity. The Soil Information System for Latin America and the Caribbean, SISLAC, is a regional initiative promoted by the FAO's South American Soil Partnership to contribute to the sustainable management of soil. SISLAC includes data coming from 49,084 soil profiles distributed unevenly across the continent, making it the region's largest soil database. However, some problems hinder its usages, such as the quality of the data and its high dimensionality. The objective of this research is twofold. First, to evaluate the quality of SISLAC and its data values and generate a new, improved version that meets the minimum quality requirements to be used by different interests or practical applications. Second, to demonstrate the potential of improved soil profile databases to generate more accurate information on soil properties, by conducting a case study to estimate the spatial variability of the percentage of soil organic carbon using 192 profiles in a 1473 km2 region located in the department of Valle del Cauca, Colombia. The findings show that 15 percent of the existing soil profiles had an inaccurate description of the diagnostic horizons. Further correction of an 4.5 additional percent of existing inconsistencies improved overall data quality. The improved database consists of 41,691 profiles and is available for public use at https://doi.org/10.5281/zenodo.6540710 (Díaz-Guadarrama, S. & Guevara, M., 2022). The updated profiles were segmented using algorithms for quantitative pedology to estimate the spatial variability. We generated segments one centimeter thick along with each soil profile data, then the values of these segments were adjusted using a spline-type function to enhance vertical continuity and reliability. Vertical variability was estimated up to 150 cm in-depth, while ordinary kriging predicts horizontal variability at three depth intervals, 0 to 5, 5 to 15, and 15 to 30 cm, at 250 m-spatial resolution, following the standards of the GlobalSoilMap project. Finally, the leave-one-out cross-validation provides information for evaluating the kriging model performance, obtaining values for the RMSE index between 1.77 % and 1.79 % and the R2 index greater than 0.5. The results show the usability of SISLAC database to generate spatial information on soil properties and suggest further efforts to collect a more significant amount of data to guide sustainable soil management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.