This paper reports the measurement of the energy loss of protons at the energy of 100 keV penetrating a partially ionized hydrogen plasma. The plasma of ne ≈ 1015–16 cm−3; Te ≈ 1–2 eV and lifetime of about 8 µs is created by the hydrogen gas discharge. The experimental results show an increase of a factor of 2.8 in the energy loss, which are in good agreement with the Bethe, Standard Stopping Model, Li–Petrasso and Vlasov models’ predictions within the error limit. The Bethe–Bloch Coulomb logarithm term is found to increase by a factor of 4.0 for free electrons as compared with the situation where bound electrons prevail. The potential application of protons energy loss for diagnosing the electron density in plasma is proposed too.
A novel method to determine the total hydrogen density and, accordingly, a precise plasma temperature in a lowly ionized hydrogen plasma is described. The key to the method is to analyze the energy loss of swift heavy ions interacting with the respective bound and free electrons of the plasma. A slowly developing and lowly ionized hydrogen theta-pinch plasma is prepared. A Boltzmann plot of the hydrogen Balmer series and the Stark broadening of the H_{β} line preliminarily defines the plasma with a free electron density of (1.9±0.1)×10^{16} cm^{-3} and a free electron temperature of 0.8-1.3 eV. The temperature uncertainty results in a wide hydrogen density, ranging from 2.3×10^{16} to 7.8×10^{18} cm^{-3}. A 108 MHz pulsed beam of ^{48}Ca^{10+} with a velocity of 3.652 MeV/u is used as a probe to measure the total energy loss of the beam ions. Subtracting the calculated energy loss due to free electrons, the energy loss due to bound electrons is obtained, which linearly depends on the bound electron density. The total hydrogen density is thus determined as (1.9±0.7)×10^{17} cm^{-3}, and the free electron temperature can be precisely derived as 1.01±0.04 eV. This method should prove useful in many studies, e.g., inertial confinement fusion or warm dense matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.