The purpose of this study was to estimate the absolute and relative masses of the three types of skeletal muscle fibers in the total hindlimb of the male Sprague-Dawley rat (Rattus norvegicus). For six rats, total body mass was recorded and the following weights taken from dissection of one hindlimb: 32 individual major muscles or muscle parts, remaining skeletal musculature (small hip muscles and intrinsic foot muscles), bone, inguinal fat pad, and skin. The fibers from the 32 muscles or muscle parts (which constituted 98% of the hindlimb skeletal muscle mass) were classified from histochemistry as fast-twitch oxidative glycolytic (FOG), fast-twitch glycolytic (FG), or slow-twitch oxidative (SO), and their populations were determined. Fiber cross-sectional areas from the same muscles were measured with a digitizer. Mass of each of the fiber types within muscles and in the total hindlimb was then calculated from fiber-type population, fiber-type area, and muscle-mass data. Skeletal muscle made up 71% of the total hindlimb mass. Of this, 76% was occupied by FG fibers, 19% by FOG fibers, and 5% by SO fibers. Thus, the FG fiber type is clearly the predominant fiber type in the rat hindlimb in terms of muscle mass. Fiber-type mass data are compared with physiological (blood flow) and biochemical (succinate dehydrogenase activities) data for the muscles taken from previous studies, and it is demonstrated that these functional properties are closely related to the proportions of muscle mass composed of the various fiber types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.