The near-surface structure of the room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide has been investigated as a function of temperature between 100 and 620 K. We used a combination of photoelectron spectroscopies (XPS and UPS), metastable induced electron spectroscopy (MIES), and high-resolution electron energy loss spectroscopy (HREELS). The valence band and HREELS spectra are interpreted on the basis of density functional theory (DFT) calculations. At room temperature, the most pronounced structures in the HREELS, UPS, and MIES spectra are related to the CF3 group in the anion. Spectral changes observed at 100 K are interpreted as a change of the molecular orientation at the outermost surface, when the temperature is lowered. At elevated temperatures, early volatilization, starting at 350 K, is observed under reduced pressure.
The near-surface electronic structure of the room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide has been investigated with ultraviolet and X-ray photoelectron spectroscopy as well as metastable induced electron spectroscopy. The results have been compared with density functional theory calculations. The good agreement between the experimental and theoretical data provides detailed insight into the origin of the observed spectral features. In particular, we found that a simple composition of the spectra of the isolated ions does not suffice to fit to the experimental results, but interionic interactions have to be considered.
The interaction between oxygen vacancies and La atoms in the La doped HfO(2) dielectric were studied using first principles total energy calculations. La dopants in the vicinity of a neutral oxygen vacancy (V(O)) show lower formation energy compared to the La defects far from V(O) centres. La doping in HfO(2) leads to the shift of the defect states of oxygen vacancies towards the conduction band edge. A statistical average of this shift over several possible configurations of La atoms and V(O) shows that the incorporation of La effectively passivates the V(O) induced defect states leading to the reduction of the gate leakage current and improvement of the device reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.