With the advent of high-energy-density ͑HED͒ experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, millimeter-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors, equations of state relevant to planetary interiors, strong shock-driven nonlinear hydrodynamics and radiative dynamics relevant to supernova explosions and subsequent evolution, protostellar jets and high Mach number flows, radiatively driven molecular clouds and nonlinear photoevaporation front dynamics, and photoionized plasmas relevant to accretion disks around compact objects such as black holes and neutron stars.
The conditions for validity and the limitations of experiments intended to simulate astrophysical hydrodynamics are discussed, with application to some ongoing experiments. For systems adequately described by the Euler equations, similarity criteria required for properly scaled experiments are identiÐed. The conditions for the applicability of the Euler equations are formulated, based on the analysis of localization, heat conduction, viscosity, and radiation. Other considerations involved in such a scaling, including its limitations at small spatial scales, are discussed. The results are applied to experiments aimed at simulating three-dimensional hydrodynamics during supernova explosions and hydrodynamic instabilities in young supernova remnants. In addition, hydrodynamic situations with signiÐcant radiative e †ects are discussed.
Collisionless shocks can be produced as a result of strong magnetic fields in a plasma flow, and therefore are common in many astrophysical systems. The Weibel instability is one candidate mechanism for the generation of su ciently strong fields to create a collisionless shock. Despite their crucial role in astrophysical systems, observation of the magnetic fields produced by Weibel instabilities in experiments has been challenging. Using a proton probe to directly image electromagnetic fields, we present evidence of Weibelgenerated magnetic fields that grow in opposing, initially unmagnetized plasma flows from laser-driven laboratory experiments. Three-dimensional particle-in-cell simulations reveal that the instability e ciently extracts energy from the plasma flows, and that the self-generated magnetic energy reaches a few percent of the total energy in the system. This result demonstrates an experimental platform suitable for the investigation of a wide range of astrophysical phenomena, including collisionless shock formation in supernova remnants, large-scale magnetic field amplification, and the radiation signature from gamma-ray bursts.The magnetic fields required for collisionless shock formation in astrophysical systems may either be initially present, for example in supernova remnants or young galaxies 1 , or they may be selfgenerated in systems such as gamma-ray bursts (GRBs; ref. 2). In the case of GRB outflows, the intense magnetic fields are greater than those which can be seeded by the GRB progenitor or produced by misaligned density and temperature gradients (the Biermannbattery effect) 3,4 . It has long been known that instabilities can generate strong magnetic fields, even in the absence of seed fields. Weibel considered the development of an electromagnetic instability driven by the electron velocity anisotropy in a background of resting ions 5 . The signature of the instability is a pattern of current filaments stretched along the axis of symmetry of the electron motion. The process is quite general, and subsequent work has shown that such instabilities can be excited in both non-relativistic and relativistic shocks. This general nature makes the Weibel instability common in astrophysical systems [6][7][8] . The instability provides a mechanism by which the electromagnetic turbulence associated with the formation of collisionless shocks is fed by the flow anisotropy of the protons (and ions) stochastically reflecting off of the shock 9-11 , and leading ultimately to strong particle acceleration in GRB's (ref. 12).
Astrophysical research has traditionally been divided into observations and theoretical modeling or a combination of both. A component sometimes missing has been the ability to quantitatively test the observations and models in an experimental setting where the initial and final states are well characterized. Intense lasers are now being used to recreate aspects of astrophysical phenomena in the laboratory, allowing the creation of experimental test beds where observations and models can be quantitatively compared with laboratory data. Experiments are under development at intense laser facilities to test and refine our understanding of phenomena such as supernovae, supernova remnants, gamma-ray bursts, and giant planets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.