Wilson, C, et al. 2017 Widespread infilling of tidal channels and navigable waterways in the human-modified tidal deltaplain of southwest Bangladesh. Elem Sci Anth, 5: 78. DOI: https://doi.org/10.1525/elementa.263 RESEARCH ARTICLEWidespread infilling of tidal channels and navigable waterways in the human-modified tidal deltaplain of southwest Bangladesh Since the 1960s, ~5000 km 2 of tidal deltaplain in southwest Bangladesh has been embanked and converted to densely inhabited, agricultural islands (i.e., polders). This landscape is juxtaposed to the adjacent Sundarbans, a pristine mangrove forest, both well connected by a dense network of tidal channels that effectively convey water and sediment throughout the region. The extensive embanking in poldered areas, however, has greatly reduced the tidal prism (i.e., volume of water) transported through local channels. We reveal that >600 km of these major waterways have infilled in recent decades, converting to land through enhanced sedimentation and the direct blocking of waterways by embankments and sluice gates. Nearly all of the observed closures (~98%) have occurred along the embanked polder systems, with no comparable changes occurring in channels of the Sundarbans (<2% change). We attribute most of the channel infilling to the local reduction of tidal prism in poldered areas and the associated decline in current velocities. The infilled channels account for ~90 km 2 of new land in the last 40-50 years, the rate of which, ~2 km 2 /yr, offsets the 4 km 2 /yr that is eroded at the coast, and is equivalent to ~20% of the new land produced naturally at the Ganges-Brahmaputra tidal rivermouth. Most of this new land, called 'khas' in Bengali, has been reclaimed for agriculture or aquaculture, contributing to the local economy. However, benefits are tempered by the loss of navigable waterways for commerce, transportation, and fishing, as well as the forced rerouting of tidal waters and sediments necessary to sustain this low-lying landscape against rising sea level. A more sustainable delta will require detailed knowledge of the consequences of these hydrodynamic changes to support more scientifically-grounded management of water, sediment, and tidal energy distribution.
Abstract. The landscape of southwest Bangladesh, a region constructed primarily by fluvial processes associated with the Ganges River and Brahmaputra River, is now maintained almost exclusively by tidal processes as the fluvial system has migrated east and eliminated the most direct fluvial input. In natural areas such as the Sundarbans National Forest, year-round inundation during spring high tides delivers sufficient sediment that enables vertical accretion to keep pace with relative sea-level rise. However, recent human modification of the landscape in the form of embankment construction has terminated this pathway of sediment delivery for much of the region, resulting in a startling elevation imbalance, with inhabited areas often sitting >1 m below mean high water. Restoring this landscape, or preventing land loss in the natural system, requires an understanding of how rates of water and sediment flux vary across timescales ranging from hours to months. In this study, we combine time series observations of water level, salinity, and suspended sediment concentration with ship-based measurements of large tidal-channel hydrodynamics and sediment transport. To capture the greatest possible range of variability, cross-channel transects designed to encompass a 12.4 h tidal cycle were performed in both dry and wet seasons during spring and neap tides. Regional suspended sediment concentration begins to increase in August, coincident with a decrease in local salinity, indicating the arrival of the sediment-laden, freshwater plume of the combined Ganges–Brahmaputra–Meghna rivers. We observe profound seasonality in sediment transport, despite comparatively modest seasonal variability in the magnitude of water discharge. These observations emphasize the importance of seasonal sediment delivery from the main-stem rivers to this remote tidal region. On tidal timescales, spring tides transport an order of magnitude more sediment than neap tides in both the wet and dry seasons. In aggregate, sediment transport is flood oriented, likely as a result of tidal pumping. Finally, we note that rates of sediment and water discharge in the tidal channels are of the same scale as the annually averaged values for the Ganges and Brahmaputra rivers. These observations provide context for examining the relative importance of fluvial and tidal processes in what has been defined as a quintessentially tidally influenced delta in the classification scheme of Galloway (1975). These data also inform critical questions regarding the timing and magnitude of sediment delivery to the region, which are especially important in predicting and preparing for responses of the natural system to ongoing environmental change.
Wave‐supported fluid muds (WSFM) are a type of gravity flow that can rapidly transport sediment across continental margins. They occur when wave‐induced bed stress maintains suspended‐sediment concentrations (SSC) >10 g L−1, and sediment‐induced stratification near the top of the wave boundary layer limits upward diffusion of sediment. Observations from near‐bed instrumentation are used to evaluate the conditions under which WSFMs form on the continental shelf offshore of the Waipaoa River, NZ. An event in July 2010 featured >130 h of energetic ocean conditions, and water discharge >1900 m3 s−1. A calibrated acoustic backscatter sensor at the midshelf measured near‐bed SSC >50 g L−1, with a strong lutocline occurring >15 cm above the predicted wave‐current boundary layer, resulting in ~5 cm deposition. A velocity anomaly occurred during this time, with offshore‐directed currents faster at 1 m above bed (mab) than at 3.5 mab. Using these observations, we empirically solve a simple buoyancy‐drag force balance to estimate the gravity‐driven velocity of the WSFM, which is always <0.03 m s−1. Extending the force balance across a shelf transect suggests that WSFM‐carried sediment can reach the shelf edge in 50–240 h. Spatial and temporal patterns of deposition predicted by the gradient of modeled sediment flux correlate well with seabed observations on the Waipaoa shelf reported in Walsh et al. (2014). This study highlights the importance of WSFMs for cross‐shelf sediment transport, despite relatively slow gravity‐driven velocities and the infrequency with which they occur.
We examine variations in discharge exchange between two parallel, 1‐ to 2‐km‐wide tidal channels (the Shibsa and the Pussur) in southwestern Bangladesh over spring‐neap, and historical timescales. Our objective is to evaluate how large‐scale, interconnected tidal channel networks respond to anthropogenic perturbation. The study area spans the boundary between the pristine Sundarbans Reserved Forest, where regular inundation of the intertidal platform maintains the fluvially abandoned delta plain, and the anthropogenically modified region to the north, where earthen embankments sequester large areas of formerly intertidal landscape. Estimates of tidal response to the embankment‐driven reduction in basin volume, and hence tidal prism, predict a corresponding decrease in size of the mainstem Shibsa channel, yet the Shibsa is widening and locally scouring even as the interconnected Pussur channel faces rapid shoaling. Rather, the Shibsa has maintained or even increased its pre‐polder tidal prism by capturing a large portion of the Pussur's basin via several “transverse” channels that are themselves widening and deepening. We propose that an enhanced tidal setup in the Pussur and the elimination of an effective Shibsa‐Pussur flow barrier are driving this basin capture event. These results illustrate previously unrecognized channel interactions and emphasize the importance of flow reorganization in response to perturbations of interconnected, multichannel tidal networks that characterize several large tidal delta plains worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.