Hydrothermal carbonization is emerging as a promising eco-friendly technology for the management of wet biomass wastes through energy recovery. It avoids drying of the feedstock and operates at a much lower temperature than conventional thermal conversion technologies, giving rise to a carbonaceous solid, hydrochar, of improved fuel quality with respect to the starting biomass. However, the aqueous fraction resulting from this process, the so-called process water, represents a troublesome secondary waste requiring effective treatment because of the high chemical oxygen demand and the presence of varying amounts of nutrients. Anaerobic digestion appears as a potential solution allowing significant reduction of the organic load while producing methane-rich biogas, thus contributing to energy recovery. Integrating hydrothermal carbonization and anaerobic digestion is gaining interest in the literature. This review compiles the reported studies on the application of hydrothermal carbonization coupled with anaerobic digestion for energy recovery of different biomass wastes, analyzing the energy balances. The main characteristics of the resulting HC and the methanogenic potential of the process waters are reviewed in connection with the operating conditions, as well as the possibility of nutrient recovery. Life cycle assessment and economic studies are included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.