The present work aims to analyze machine learning techniques applied to pattern recognition of diesel engines audio files captured with a smartphone. Audio samples from 3 different engines were recorded, under 3 different operating conditions: normal operation, leaking hose and injector failure. Several combinations of data processing, audio feature extraction and classifiers were evaluated. The results show that this approach is very promising for fault diagnosis of diesel engines. RESUMOO presente trabalho tem como objetivo a análise de técnicas de machine learning aplicadas ao reconhecimento de padrões em arquivos de áudio contendo sons de motores a diesel capturados a partir de um smartphone. Foram gravadas amostras de áudio de 3 motores distintos, em 3 condições de operação diferentes: motor com funcionamento normal, com a mangueira furada e com falha no injetor. Várias combinações de tratamento dos dados, de atributos extraídos do áudio e de classificadores foram testadas. Os resultados mostram que essa abordagem é bastante promissora para diagnosticar falhas em motores a diesel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.