The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19).
Repeat proteins are built of modules, each of which constitutes a structural motif. We have investigated whether fragments of a designed consensus armadillo repeat protein (ArmRP) recognize each other. We examined a split ArmRP consisting of an N-capping repeat (denoted Y), three internal repeats (M), and a C-capping repeat (A). We demonstrate that the C-terminal MA fragment adopts a fold similar to the corresponding part of the entire protein. In contrast, the N-terminal YM2 fragment constitutes a molten globule. The two fragments form a 1:1 YM2:MA complex with a nanomolar dissociation constant essentially identical to the crystal structure of the continuous YM3A protein. Molecular dynamics simulations show that the complex is structurally stable over a 1 μs timescale and reveal the importance of hydrophobic contacts across the interface. We propose that the existence of a stable complex recapitulates possible intermediates in the early evolution of these repeat proteins.
Lipocalins are extracellular proteins (17-25 kDa) that bind and transport small lipophilic molecules. The three-dimensional structure of the first lipocalin from a metatherian has been determined at different values of pH both with and without bound ligands. Trichosurin, a protein from the milk whey of the common brushtail possum, Trichosurus vulpecula, has been recombinantly expressed in Escherichia coli, refolded from inclusion bodies, purified and crystallized at two different pH values. The three-dimensional structure of trichosurin was solved by X-ray crystallography in two different crystal forms to 1.9 A (1 A=0.1 nm) and 2.6 A resolution, from crystals grown at low and high pH values respectively. Trichosurin has the typical lipocalin fold, an eight-stranded anti-parallel beta-barrel but dimerizes in an orientation that has not been seen previously. The putative binding pocket in the centre of the beta-barrel is well-defined in both high and low pH structures and is occupied by water molecules along with isopropanol molecules from the crystallization medium. Trichosurin was also co-crystallized with a number of small molecule ligands and structures were determined with 2-naphthol and 4-ethylphenol bound in the centre of the beta-barrel. The binding of phenolic compounds by trichosurin provides clues to the function of this important marsupial milk protein, which is highly conserved across metatherians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.