Optimization of process parameters in sheet metal forming is an important task to reduce manufacturing cost. To determine the optimum values of the process parameters, it is essential to find their influence on the deformation behaviour of the sheet metal. The significance of three important process parameters namely, die radius, blank holder force and friction coefficient on the deep-drawing characteristics of a stainless steel axi-symmetric cup was determined. Finite element method combined with Taguchi technique form a refined predictive tool to determine the influence of forming process parameters. The Taguchi method was employed to identify the relative influence of each process parameter considered in this study. A reduced set of finite element simulations were carried out as per the Taguchi orthogonal array. Based on the predicted thickness distribution of the deep drawn circular cup and analysis of variance test, it is evident that die radius has the greatest influence on the deep drawing of stainless steel blank sheet followed by the blank holder force and the friction coefficient. Further, it is shown that a blank holder force application and local lubrication scheme improved the quality of the formed part.
Tailor-welded blanks made of dissimilar, uniform or non-uniform thickness materials have potential applications in automobile industries. Compared to the base metal, the formability of tailor-welded blank is less due to the presence of weld area and strength mismatch between component blanks. Most sheet metals used to produce tailor-welded blanks have anisotropy induced during pre-processing stage due to large deformation. The orientation of the blank sheet rolling direction and the combination of the blank sheet materials has significant influence on the deformation behaviour. The effect of anisotropy in the tailor-welded blank and the orientation of blank sheets rolling direction during deep-drawing process are investigated in this study. Finite element analysis of deep-drawing mild steel and dual-phase steel tailor-welded blank models was carried out using research purpose FE code DD3IMP; to form a basis for tailor-welded blank design and development for a part. Anisotropy in the blank sheets has moderate influence and its contribution to increased material flow depends on the mechanical properties of the blank sheets. Appropriate combination of the blank sheets rolling direction orientation can significantly improve the formability of the tailor-welded blank in the deep-drawing of square cup.
Shape memory behavior of thermally triggered polymeric materials based on ethylene octene copolymer (EOC) and ethylene propylene diene rubber (EPDM) has been studied in details. Investigation of the shape memory behavior of uncrosslinked EOC-EPDM and electron beam crosslinked EOC-EPDM blends have been pursued thoroughly. Shape memory study has been carried out at 60°C, which shows that with the effect of electron beam radiation shape fixity behavior of the crosslinked blends becomes poor as compared with its uncrosslinked blend system whereas the improvement in shape recovery behavior takes place after the exposure to electron beam radiation. Morphology study by Atomic Force Microscopy (AFM) and crystallinity study by X-ray diffraction analysis also give the clear idea regarding the formation of crosslinked network structure. Improvement in gel content with increasing radiation dose supports the formation of network structure. Even after the crosslinking in presence of electron beam radiation also, it has been found that crosslinked EPDM rich blends is superior in terms of shape memory behavior point of view. Lower decay of stress value coupled with lower relaxation ratio of crosslinked EPDM rich blend support its superior shape memory behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.