This work presents the solution of the steady-state heat transfer problem in a rectangular plate with an internal heat source in a context in which the thermal conductivity depends on the local temperature. This generalization of one of the most classical heat transfer problems is carried out with the aid of the Kirchhoff transformation and employs only well known tools, as the superposition of solutions and the Fourier series. The obtained results illustrate how the usual procedures may be extended for solving more realistic physical problems (since the thermal conductivity of any material is temperature-dependent). A general formula for evaluating the Kirchhoff transformation as well as its inverse is presented too. This work has a strong didactical contribution since such analytical solutions are not found in any classical heat transfer book. In addition, the main idea can be used in a lot of similar problems.
This work presents an useful tool for constructing the solution of steady-state heat transfer problems, with temperature-dependent thermal conductivity, by means of the solution of Poisson equations. Specifically, it will be presented a procedure for constructing the solution of a nonlinear second-order partial differential equation, subjected to Robin boundary conditions, by means of a sequence whose elements are obtained from the solution of very simple linear partial differential equations, also subjected to Robin boundary conditions. In addition, an a priori upper bound estimate for the solution is presented too. Some examples, involving temperature-dependent thermal conductivity, are presented, illustrating the use of numerical approximations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.