A multileaf collimator for electrons (eMLC) has been designed that fulfils the technical requirements for providing advanced irradiation techniques with electrons. In the present work, the basic design parameters of leaf material, leaf height, leaf width and number of leaves as well as leaf overtravel and leaf shape were determined such that an eMLC with motorized leaves can be manufactured by a company specialized in MLC technology. For this purpose, a manually driven eMLC with variable source-to-collimator distance (SCD) was used to evaluate the chosen leaf specification and investigate the impact of the SCD on the off-axis dose distribution. In order to select the final SCD of the eMLC, a compromise had to be found between maximum field size, minimum beam penumbra and necessary distance between eMLC and isocentre to eliminate patient realignments during gantry rotation. As a result, the eMLC is placed according to the target position at 72 and 84 cm SCD, respectively. This feature will be achieved by interchangeable distance holders. At these SCDs, the corresponding maximum field sizes at 100 cm source-to-isocentre distance are 20 x 20 cm and 17 x 17 cm, respectively. Finally, the off-axis dose distribution at the maximum opening of the eMLC was improved by fine-tuning the settings of the accelerator jaws and introducing trimmer bars above the eMLC. Following this optimization, a prototype eMLC consisting of 2 x 24 computer-controlled brass leaves is manufactured by 3D Line Medical Systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.