Knowledge of the molecular biology of hepatitis A virus (HAV) has increased exponentially since its identification. HAV exploits all known mechanisms of genetic variation to ensure survival, including mutation and genetic recombination. HAV has been characterized by the emergence of different genotypes, three human antigenic variants and only one major serotype. This paper reviews the genetic variability and molecular epidemiology of HAV. Its evolutionary mechanisms are described with particular emphasis on genetic recombination and HAV mutation rate. Genotypic classification methods are also discussed.
Genetic analysis of selected genome regions of hepatitis A virus (HAV) suggested that distinct genotypes of HAV could be found in different geographical regions. In order to gain insight into the genetic variability and mode of evolution of HAV in South America, an analysis was performed of sequence data obtained from the VP1 amino terminus and the VP1/2A region of HAV strains isolated over a short period of time in Uruguay, Argentina and Chile. Sequences obtained from 22 distinct HAV isolates were compared with published sequences from 21 different strains isolated all over the world. Phylogenetic analysis revealed that all strains isolated belong to a unique sub-genotype (IA). Strains isolated during an outbreak period showed a higher degree of heterogeneity than anticipated previously and the co-circulation of different isolates. The genetic variability among strains isolated in this region seems to be higher in comparison with strains isolated in other regions of the world.Human hepatitis A virus (HAV) is a hepatotropic member of the family Picornaviridae (Melnick, 1982 ;Matthews, 1982). Despite its overall physical and epidemiological similarity to enteroviruses, the structural composition of HAV, its tissue
Binding of ribosomes to the 32P-labeled genomic RNA of mengovirus was studied in lysates of mouse L929 and Krebs ascites cells under conditions for initiation of translation. Upon total digestion with RNase Tl, the 32P-labeled RNA protected in either 40S or 80S initiation complexes yielded four unique, large oligonucleotides. Each of these oligonucleotides occurred once in the viral RNA molecule. The same four oligonucleotides were recovered from 80S initiation complexes formed in lysates in which unlabeled mengovirus RNA had been translated extensively, indicating that recognition by ribosomes was not modulated detectably by a viral translation product. The recognition of intact, 32P-labeled mengovirus RNA by eucaryotic initiation factor 2 (eIF-2) was examined by direct complex formation. Fingerprint analysis of the RNA protected by eIF-2 against RNase T1 digestion yielded three T1 oligonucleotides that were identical to three of the four oligonucleotides protected in either 40S or 80S initiation complexes. A
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.