The Petri Net Markup Language (PNML) is an XML-based interchange format for Petri nets. In order to support different versions of Petri nets and, in particular, future versions of Petri nets, PNML allows the definition of Petri net types. Due to this flexibility, PNML is a starting point for a standard interchange format for Petri nets. This paper discusses the design principles, the basic concepts, and the underlying XML technology of PNML. The main purpose of this paper is to disseminate the ideas of PNML and to stimulate discussion on and contributions to a standard Petri net interchange format.W.M.P. van der Aalst and E. Best (Eds.): ICATPN
Random fluctuations are inherent to all complex molecular systems. Although nature has evolved mechanisms to control stochastic events to achieve the desired biological output, reproducing this in synthetic systems represents a significant challenge. Here we present an artificial platform that enables us to exploit stochasticity to direct motile behavior. We found that enzymes, when confined to the fluidic polymer membrane of a core-shell coacervate, were distributed stochastically in time and space. This resulted in a transient, asymmetric configuration of propulsive units, which imparted motility to such coacervates in presence of substrate. This mechanism was confirmed by stochastic modelling and simulations in silico. Furthermore, we showed that a deeper understanding of the mechanism of stochasticity could be utilized to modulate the motion output. Conceptually, this work represents a leap in design philosophy in the construction of synthetic systems with life-like behaviors.
Background To reduce the transmission of the severe acute respiratory syndrome coronavirus 2 in its first wave, European governments have implemented successive measures to encourage social distancing. However, it remained unclear how effectively measures reduced the spread of the virus. We examined how the effective-contact rate (ECR), the mean number of daily contacts for an infectious individual to transmit the virus, among European citizens evolved during this wave over the period with implemented measures, disregarding a priori information on governmental measures. Methods We developed a data-oriented approach that is based on an extended Susceptible-Exposed-Infectious-Removed (SEIR) model. Using the available data on the confirmed numbers of infections and hospitalizations, we first estimated the daily total number of infectious-, exposed- and susceptible individuals and subsequently estimated the ECR with an iterative Poisson regression model. We then compared change points in the daily ECRs to the moments of the governmental measures. Results The change points in the daily ECRs were found to align with the implementation of governmental interventions. At the end of the considered time-window, we found similar ECRs for Italy (0.29), Spain (0.24), and Germany (0.27), while the ECR in the Netherlands (0.34), Belgium (0.35) and the UK (0.37) were somewhat higher. The highest ECR was found for Sweden (0.45). Conclusions There seemed to be an immediate effect of banning events and closing schools, typically among the first measures taken by the governments. The effect of additionally closing bars and restaurants seemed limited. For most countries a somewhat delayed effect of the full lockdown was observed, and the ECR after a full lockdown was not necessarily lower than an ECR after (only) a gathering ban.
The interactions between and with nanostructures can only be fully understood when the functional group distribution on their surfaces can be quantified accurately. Here we apply a combination of direct stochastic optical reconstruction microscopy (dSTORM) imaging and probabilistic modelling to analyse molecular distributions on spherical nanoparticles. The properties of individual fluorophores are assessed and incorporated into a model for the dSTORM imaging process. Using this tailored model, overcounting artefacts are greatly reduced and the locations of dye labels can be accurately estimated, revealing their spatial distribution. We show that standard chemical protocols for dye attachment lead to inhomogeneous functionalization in the case of ubiquitous polystyrene nanoparticles. Moreover, we demonstrate that stochastic fluctuations result in large variability of the local group density between particles. These results cast doubt on the uniform surface coverage commonly assumed in the creation of amorphous functional nanoparticles and expose a striking difference between the average population and individual nanoparticle coverage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.