Effect of the surrounding anisotropic liquid crystal medium on the surface plasmon resonance (SPR) exhibited by concentrated suspensions of gold nanospheres has been investigated experimentally and compared with the Mie scattering theory. The observed polarization-sensitive SPR and the red-shift in the SPR wavelength with increasing concentration of the gold nanospheres in the liquid crystal matrix have been explained using calculations based on the Maxwell Garnet effective medium theory. Agglomeration of the gold nanospheres that could also lead to such a red-shift has been ruled out using Atomic force microscopy study of thin nanoparticle-doped smectic films obtained on solid substrates. Our study demonstrates feasibility of obtaining tunable optical bulk metamaterials based on smectic liquid crystal - nanoparticle composites.
We report on two anomalous trends in the temperature dependences of the splay (K11) and bend (K33) elastic constants in the nematic (N) phase of mixtures of compounds with rodlike (R) and bent-core (BC) molecules: As the sample is cooled from the isotropic to N transition point, (i) K33 increases, attains a maximum value and then decreases, and (ii) close to the N to smectic A (SmA) transition point, K11 decreases sharply. At higher temperatures the bow axes of BC molecules are aligned along the director n, strongly favoring a bend distortion of n as the orientational order parameter is increased. Close to the N-SmA transition point the smecticlike short-range order builds up, and the arrow axes of BC molecules are aligned along n, facilitating a splay distortion of n. A simple model calculation brings out the anomalous trend in K33.
We report the discovery of an orientational transition of bent-core molecules in a background anisotropic medium, in this case a smectic liquid crystal made of rod-like molecules. The resulting director is apolar in nature, and the medium can be described as an orthogonal biaxial smectic. The detailed phase diagram of mixtures of the two types of compounds revealed the induction of two liquid crystalline phases that are specific to compounds with bent-core molecules. The chemical nature of the bounding surface had a marked influence on the observed textures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.