Image segmentation has attracted a lot of attention due to its potential biomedical applications. Based on these, in the current research, an attempt has been made to explore object enhancement and segmentation for CT images of lungs infected with COVID-19. By implementing Pythagorean fuzzy entropy, the considered images were enhanced. Further, by constructing Pythagorean fuzzy measures and utilizing the thresholding technique, the required values of thresholds for the segmentation of the proposed scheme are assessed. The object extraction ability of the five segmentation algorithms including current sophisticated, and proposed schemes are evaluated by applying the quality measurement factors. Ultimately, the proposed scheme has the best effect on object separation as well as the quality measurement values.
Artificial intelligence (AI) is an excellent potential technology that is evolving day-to-day and a critical avenue for exploration in the world of computer science & engineering. Owing to the vast volume of data and the eventual need to turn this data into usable knowledge and realistic solutions, artificial intelligence approaches and methods have gained substantial prominence in the knowledge economy and community world in general. AI revolutionizes and raises athletics to an entirely different level. Although it is clear that analytics and predictive research have long played a vital role in sports, AI has a massive effect on how games are played, structured, and engaged by the public. Apart from these, AI helps to analyze the mental stability of the athletes. This research proposes the Artificial Intelligence assisted Effective Monitoring System (AIEMS) for the specific intelligent analysis of sports people’s psychological experience. The comparative analysis suggests the best AI strategies for analyzing mental stability using different criteria and resource factors. It is observed that the growth in the present incarnation indicates a promising future concerning AI use in elite athletes. The study ends with the predictive efficiency of particular AI approaches and procedures for further predictive analysis focused on retrospective methods. The experimental results show that the proposed AIEMS model enhances the athlete performance ratio of 98.8%, emotion state prediction of 95.7%, accuracy ratio of 97.3%, perception level of 98.1%, and reduces the anxiety and depression level of 15.4% compared to other existing models.
A simple Fuzzy logic controller (FLC) applied to buck converter is presented in this paper. This approach uses FLC which performs better when compared with the conventional PI controllers. In proposed buck converters, high voltage dc supply is switched at very high frequency and inductively transferred to dc load via a high frequency transformer and rectifier. In this converter four power switches are connected in series to primary of high frequency transformer for large load currents. To achieve large step-down voltage ratios the power switches are turned ON and OFF alternatively with a time gap. The voltage step-down ratios, Total Harmonic Distortion and angular velocity of drive are the parameters to be analyzed. The comparison with the original FLC and comparison of three level DC-DC converter with capacitor and pi filter is carried out by MATLAB-Simulink simulation and Model is designed to verify the proposed method performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.