The objectives of this study were 1) to investigate production and energetic efficiencies among lactating dairy Holstein-Friesian (HF), Jersey (J), and Jersey x Holstein-Friesian (F(1)) cows over a total lactation at pasture and 2) to measure the associations among efficiency variables and performance traits. Data from 110 cows were available (37 HF, 36 J, and 37 F(1)). Breed groups were not balanced for parity; 16 HF, 10 J, and 9 F(1) were in parity 1, whereas the remainder were in parity 2. Milk production, body weight (BW), body condition score (BCS), and estimates of dry matter intake (DMI) corresponding to 51, 108, 149, 198, and 233 d in milk were available. Breed group had a significant effect on all the production parameters investigated: milk yield, solids-corrected milk (SCM), milk fat, protein and lactose concentrations, and milk solids (MLKS; fat + protein yield). Daily MLKS yield was similar for HF and J (1.33 and 1.28 kg/d, respectively). There was a tendency for F(1) (1.41 kg/d) to produce more MLKS compared with HF. The HF breed had higher BW throughout the study compared with F(1) and J. Mean BCS was higher for F(1) (3.00) and J (2.93) compared with HF (2.76). Mean DMI was similar with HF (16.9 kg) and F(1) (16.2 kg) and was lowest with J (14.7 kg). Breed group had a significant effect on all the efficiency parameters investigated: total DMI per 100 kg of BW, SCM per 100 kg of BW, MLKS per 100 kg of BW, and MLKS per total DMI, which tended to be highest for J. Production efficiency based on net energy intake per MLKS was most favorable for F(1) and J compared with HF [12.5, 13.0, and 14.1 UFL, respectively, where 1 UFL is defined as the net energy content of 1 kg of standard barley for milk production (O'Mara, 2000)]. Significant estimates of hybrid vigor were evidenced for milk yield, milk lactose content, SCM, MLKS, net energy for lactation, BW, BCS, and net energy intake per MLKS. The correlations examined indicated that production efficiency was positively associated with MLKS yield.
The objective of this study was to investigate the effect of 2 breeds, Holstein and Jersey, and their F(1) hybrid (Jersey x Holstein) on milk fatty acid (FA) concentrations under grazing conditions, especially conjugated linoleic acid (CLA) and n-3 polyunsaturated fatty acids because of their importance to human health. Eighty-one cows (27 per breed grouping) were allocated a predominantly perennial ryegrass pasture. Samples were collected over 2 periods (June and July). Breed affected dry matter intake and milk production and composition. Holstein cows had the highest dry matter intake (18.4+/-0.40kg of DM/d) and milk production (21.1+/-0.53kg of DM/d). Holstein and Jersey x Holstein cows had similar 4% fat corrected milk, fat yield, and protein yield; with the exception of fat yield, these were all higher than for Jersey cows. Milk fat concentration was highest for Jersey cows and lowest for Holstein cows, with the hybrid cows intermediate. Total FA and linolenic acid intake (1.09+/-0.023 and 0.58+/-0.012 kg/d, respectively) were highest for Holstein cows. In terms of milk FA, Holstein cows had higher contents of C14:1, cis-9 C18:1 and linoleic acid. In turn, Jersey and Jersey x Holstein cows had higher content of C16:0. Milk concentrations of neither the cis-9,trans-11 isomer of CLA nor its precursor, vaccenic acid, were affected by breed. Nevertheless, large variation between individual animals within breed grouping was observed for CLA and estimated Delta(9)-desaturase activity. There was some evidence for a negative heterotic effect on milk concentration of CLA, with the F(1) hybrid cows having lower concentrations compared with the mid parent average. Plasma FA profile did not accurately reflect differences in milk FA composition. In conclusion, there was little evidence for either breed or beneficial heterotic effects on milk FA content with human health-promoting potential, though significant within-breed, interanimal variation was observed.
The objectives of this study were to investigate differences in grazing behavior among Holstein-Friesian (HF), Jersey (JE), and Jersey x Holstein-Friesian (F(1)) cows under an intensive, seasonal, grass-based environment and to determine whether associations exist among grazing behavior, intake capacity, and production efficiency. Data from a total of 108 animals (37 HF, 34 JE, and 37F(1)) were available for analysis. Measurements included milk production, body weight (BW), intake, and grazing behavior. Breed group had a significant effect on all of the production, grass dry matter intake, and efficiency parameters investigated. No differences were observed among the breeds for grazing time, number of grazing bouts, grazing bout duration, and total number of bites. Grazing mastications were higher for the JE cows compared with the HF cows. Grass dry matter intake per bite and rate of intake per minute were higher for the HF cows compared with the JE cows. Large differences between the breeds were apparent when grazing behavior measurements were expressed per unit of BW and per unit of intake. In absolute terms, the HF cows spent more time ruminating and had more mastications during rumination than the JE cows. However, when expressed per unit of BW, ruminating time was greater for the JE cows and they tended to have more ruminating mastications compared with the HF cows. Despite these differences, ruminating time and ruminating mastications per unit of intake were similar for the 2 breeds. For the most part, the F(1) cows tended to be similar to the mid-parent mean, but results showed an increase in biting rate, lower grazing duration per bout, and a tendency to achieve a high intake per bite compared with the average of the parent breeds. The results obtained also indicate that inherent grazing and ruminating differences exist between cows varying in intake capacity and production efficiency. Cows with higher intake capacities have increased grazing time and rate of intake per unit of BW. Increased production efficiency, on the other hand, appears to be aided, in particular by improvements in mastication behavior during grazing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.