The Advanced Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. Development of this four-meter off-axis solar telescope has presented many optical design challenges including:• support of both Nasmyth and flexible coudé lab instrumentation,• incorporation of an integrated adaptive optics system, • thermal control of optics, and • optical alignment of multiple off-axis conics.This paper gives an overview of the optical design, error budgeting, and the performance modeling done to ensure the telescope will satisfy its optical performance requirements.
Abstract. The Advanced Technology Solar Telescope (ATST) will perform high-resolution studies of the Sun's magnetic fields needed to understand their role in the fundamental processes responsible for solar variability. The generation of magnetic fields through dynamo processes, the amplification of fields through the interaction with plasma flows, and the destruction of fields remain poorly understood. There is incomplete insight as to what physical mechanisms are responsible for heating the corona, what causes variations in the radiative output of the Sun, and what mechanisms trigger flares and coronal mass ejections. Progress in answering these critical questions requires study of the interaction of the magnetic field and convection with a resolution sufficient to observe scales fundamental to these processes.The 4-m aperture ATST is designed as a unique scientific tool, with excellent angular resolution, a large wavelength range, and low scattered light. With its integrated adaptive optics, the ATST will achieve a spatial resolution nearly 10 times better than any existing solar telescope.
The four-meter Advanced Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. Development of a four-meter solar telescope presents many technical challenges (e.g., thermal control of the enclosure, telescope structure and optics). We give a status report of the ATST project (e.g., system design reviews, instrument PDR, Haleakalā site environmental impact statement progress) and summarize the design of the major subsystems, including the telescope mount assembly, enclosure, mirror assemblies, wavefront correction, and instrumentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.