Although secondary insults of hypoxia and hypotension (HH) are generally considered to cause fulminant brain edema in traumatic brain injury (TBI), the combined effect of TBI with HH on brain edema and specifically the expression of aquaporin-4 (AQP4) have not been fully elucidated. The goal of this study was to document the effect of secondary insults on brain water, AQP4 expression, electrolytes, and blood-brain barrier (BBB) permeability during the acute stage of edema development. We measured brain water content and electrolytes (series 1); BBB permeability based on Evans blue (EB) dye extravasation (series 2); and AQP4 expression using immunoblotting (series 3) at 1 h and 5 h following cortical contusion injury (CCI). Secondary insults significantly worsened BBB function at 5 h post injury. Moreover, a significant reduction of upregulation on AQP4 expression was observed in trauma, coupled with a mild secondary insult of hypoxia hypotension. These findings indicate that a secondary insult following CCI at 5 h post injury worsens brain edema, disrupts ionic homeostasis, and blunts the normal upregulation of AQP4 that occurs after trauma, suggesting that the blunting of AQP4 may contribute to the detrimental effects of secondary insults.
Experimental models of traumatic brain injury (TBI) provide a useful tool for understanding the cerebral metabolic changes induced by this pathological condition. Here, we report on the time course of changes in cerebral metabolites after TBI and its correlation with early brain morphological changes using a combination of high-resolution proton magnetic resonance spectroscopy ((1)H MRS) and magnetic resonance imaging (MRI). Adult male Sprague-Dawley rats were subjected to closed head impact and examined by MRI at 1, 9, 24, 48, and and 72 h after the injury. Extracts from funnel frozen rat brains were then obtained and analyzed quantitatively by high-resolution (1)H MRS. Finally, statistical multivariate analysis was carried out to identify the combination of cerebral metabolites that best described the time evolution of diffuse TBI. The temporal changes observed in the concentration of cerebral metabolites followed three different patterns. The first pattern included taurine, threonine, and glycine, with concentrations peaking 24 h after the injury. The second pattern included glutamate, GABA, and alanine, with concentrations remaining elevated between 24 and 48 h post-injury. The third one involved creatine-phosphocreatine, N-acetylaspartate, and myo-inositol, with concentrations peaking 48 h after the injury. A multivariate stepwise discriminant analysis revealed that the combination of the organic osmolytes taurine and myo-inositol allowed optimal discrimination among the different time groups. Our findings suggest that the profile of some specific brain molecules that play a role as organic osmolytes can be used to follow-up the progression of the early diffuse brain edema response induced by TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.