Object detection is a stimulating task in the applications of computer vision. It is gaining a lot of attention in many real-time applications such as detection of number plates of suspect cars, identifying trespassers under surveillance areas, detecting unmasked faces in security gates during the COVID-19 period, etc. Region-based Convolution Neural Networks(R-CNN), You only Look once (YOLO) based CNNs, etc., comes under Deep Learning approaches. In this proposed work, an improved stacked Yolov3 model is designed for the detection of objects by bounding boxes. Hyperparameters are tuned to get optimum performance. The proposed model evaluated using the COCO dataset, and the performance is better than other existing object detection models. Anchor boxes are used for overlapping objects. After removing all the predicted bounding boxes that have a low detection probability, bounding boxes with the highest detection probability are selected and eliminated all the bounding boxes whose Intersection Over Union value is higher than 0.4. Non-Maximal Suppression (NMS) is used to only keep the best bounding box. In this experimentation, we have tried with various range of values, but finally got better result at threshold 0.5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.