Societal Impact StatementClimate resilient crops will become increasingly important, especially in regions where smallholder farmers are vulnerable to climate extremes. Enset, a multipurpose perennial staple crop consumed by over 20 million people in Ethiopia, purportedly provides food security during periods of drought. Here, we find evidence that frequent severe drought events led to an increase in enset production area. This is consistent with a broader pattern whereby farmers preferentially cultivate perennial and storable crops after long-term drought events, providing an example of adaptation to fluctuations in climate through crop choice in indigenous agrisystems. Summary• Smallholder farms in the semiarid and subhumid tropics are particularly vulnerable to increased climate variability. Indigenous agrisystems that have co-evolved with climate variability may have developed resilience strategies. In the Southwest Ethiopian Highlands, agrisystems are dominated by the multipurpose perennial staple enset (Ensete ventricosum), characterised by flexible harvest timing, high yield, long storage, and putative drought tolerance, earning it the name 'the tree against hunger'.• We tested three hypotheses using crop production area and climate data. First, that enset production area is greatest in the most drought-prone locations.Second, that farmers respond to drought events by increasing enset production area. And third, that drought encourages shifts in agrisystem composition more widely towards perennial or storable crops.
Smallholder farms in the semi-arid and sub-humid tropics are particularly vulnerable to increased climate variability. Indigenous agrisystems that have co-evolved with climate variability may have developed resilience strategies. In the Southwest Ethiopian Highlands, agrisystems are dominated by the multipurpose perennial staple enset ( Ensete ventricosum ), which has flexible harvest timing, high yield, long storage, and putative drought tolerance, earning it the name 'tree against hunger'. We tested three hypotheses using crop production area and climate data. First, that enset production area is greatest in the most drought-prone locations. Second, that farmers respond to drought events by increasing enset production area. And third, that drought encourages shifts in agrisystem composition more widely towards perennial or storable crops. We found that regions with a higher severe drought frequency are associated with significantly higher proportion of enset production. Similarly, the Standardised Precipitation Evapotranspiration Index of the previous three years is significantly negatively correlated with enset production time series, suggesting that prior drier conditions led farmers to increase the area under enset production. Regarding other crops, storage crops roots and tubers were also preferentially selected after long-term drought over annual crops, indicating their capacity for longer-term resilience. Promoting the production of crops such as perennials, which have more extensive and established root systems, may be a strategy to ensure food security during drought or climate variability. These results indicate the potential of farmer's resilience strategies to improve food security in a changing climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.