Given two n × n matrices A and A0 and a sequence of subspaces with dim the k-th subspace-projected approximated matrix Ak is defined as Ak = A + Πk(A0 − A)Πk, where Πk is the orthogonal projection on . Consequently, Akν = Aν and ν*Ak = ν*A for all Thus is a sequence of matrices that gradually changes from A0 into An = A. In principle, the definition of may depend on properties of Ak, which can be exploited to try to force Ak+1 to be closer to A in some specific sense. By choosing A0 as a simple approximation of A, this turns the subspace-approximated matrices into interesting preconditioners for linear algebra problems involving A. In the context of eigenvalue problems, they appeared in this role in Shepard et al. (2001), resulting in their Subspace Projected Approximate Matrix method. In this article, we investigate their use in solving linear systems of equations Ax = b. In particular, we seek conditions under which the solutions xk of the approximate systems Akxk = b are computable at low computational cost, so the efficiency of the corresponding method is competitive with existing methods such as the Conjugate Gradient and the Minimal Residual methods. We also consider how well the sequence (xk)k≥0 approximates x, by performing some illustrative numerical tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.