We provide a synthesis of stratigraphic data to unravel the history of the geological evolution of South Crimea in the Mesozoic and Cenozoic. The South Crimea Orogen consists of three major mega-sequences: (1) the Triassic–Early Jurassic; (2) the Aalenian–Bathonian; and (3) the Callovian–Eocene. The Late Triassic–Early Jurassic deposits formed in the environment of a forearc basin and a remnant basin. The Aalenian–Bathonian deposits formed above subduction extension and a volcanic belt. Three main Callovian–Eocene tectonic units can be identified in South Crimea: (1) the South Crimean Shelf Basin; (2) the Sudak Deepwater Trough; and (3) the Alchak–Kaya Shelf Basin at the northern margin of the Shatsky Ridge. The Oligocene–Quaternary deposits are considered to be syn-orogenic. A description of the anticipated stratigraphic units on the Shatsky Ridge is suggested for the Middle Jurassic, Callovian–Late Jurassic, Neocomian, Aptian–Albian, Late Cretaceous–Paleocene, Eocene and Maykopian. We propose a model for the geological history of the Eastern Black Sea Basin. Graben formed during the Late Barremian–Albian at the location of the future Eastern Black Sea Basin and a phase of volcanism occurred in the Albian. The main phase of rifting and spreading of oceanic crust took place during Cenomanian–Santonian time.Supplementary material: A Google Earth kmz file of the location of the outcrops and sections is available at http://www.geolsoc.org.uk/SUP18850
The upper Viséan–Serpukhovian strata in the type region for the Serpukhovian Stage is an epeiric‐sea succession ca. 90 m in thickness. The predominantly Viséan Oka Group (comprising the Aleksin, Mikhailov, and Venev formations) is dominated by photozoan packstones with fluvial siliciclastic wedges developed from the west. The Lower Serpukhovian Zaborie Group is composed of the Tarusa and Gurovo formations. The latter is a new name for the shale‐dominated unit of Steshevian Substage age in the studied area. The Zaborie Group is composed of limestones and marls in its lower (Tarusa and basal Gurovo) part and black smectitic to grey palygorskitic shales in the main part of the Gurovo Formation. The Gurovo Formation is capped by a thin limestone with oncoids and a palygorskitic–calcretic palaeosol. The Upper Serpukhovian is composed of a thin (3–12 m) Protva Limestone heavily karstified during a mid‐Carboniferous lowstand. The succession shows a number of unusual sedimentary features, such as a lack of high‐energy facies, shallow‐subtidal marine sediments penetrated by Stigmaria, the inferred atidal to microtidal regime, and palustrine beds composed of saponitic marls. The succession contains many subaerial disconformities characterized by profiles ranging from undercoal solution horizons to palaeokarsts. Incised fluvial channels are reported at two stratigraphic levels to the west of the study area. The deepest incisions developed from the Kholm Disconformity (top of the Mikhailov Formation). This disconformity also exhibits the deepest palaeokarst profile and represents the major hiatus in the Oka–Zaborie succession. The new sea‐level curve presented herein shows two major cycles separated by the Kholm Unconformity at the Mikhailov/Venev boundary. The Lower Serpukhovian transgression moved the base‐level away from falling below the seafloor so that the section becomes conformable above the Forino Disconformity (lower Tarusa). The maximum deepening is interpreted to occur in the lower dark‐shale part of the Gurovo Formation. The base of the Serpukhovian Stage is defined by FADs of the conodont Lochriea ziegleri and the foraminifer Janischewskina delicata in the middle of the sequence VN2. The Aleksinian–Mikhailovian interval is provisionally correlated with the Asbian (Lower–Middle Warnantian) in Western Europe. Based on FODs of Janischewskina typica and first representatives of Climacammina, the Venevian is correlated with the Brigantian in Western Europe. The Tarusian–Protvian interval contains diverse fusulinid and conodont assemblages, but few forms suitable for international correlation. FADs of the zonal conodont species Adetognathus unicornis and Gnathodus bollandensis at several metres above the Protvian base suggest correlation of the entire Zaborie Group and may be the basal Protvian to the Pendleian. Copyright © 2014 John Wiley & Sons, Ltd.
We present structural improvements of Esseen's (1969) and Rozovskii's (1974) estimates for the rate of convergence in the Lindeberg theorem and also compute the appearing absolute constants. We introduce the asymptotically exact constants in the constructed inequalities and obtain upper bounds for them. We analyze the values of Esseen's, Rozovskii's, and Lyapunov's fractions, compare them pairwise and provide some extremal distributions. As an auxiliary statement, we prove a sharp inequality for the quadratic tails of an arbitrary distribution (with finite second order moment) and its convolutional symmetrization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.