We present an IR lunar occultation and direct imaging search for companions in the Ophiuchus starforming region and update a similar search of the Taurus region. The search is sensitive to companions in the angular separation range 0.005-10". In Ophiuchus we surveyed 35 young star targets; this sample contains at least 10 binaries, two triples, and one quadruple. Ten of the companion stars are newly discovered. In Taurus, the survey now includes 47 systems among which there are at least 22 binaries and four triples. Only two companion stars are newly identified because there is strong overlap with prior work. All the triples and quadruple are hierarchical. The observed binary frequency in Ophiuchus, in the 3-1400 AU range of separations, is at least 1.1 ± 0.3 that of the nearby solar-like stars. This value is a lower bound because we make no corrections for incompleteness. In Taurus, in the same range of separations, the observed binary frequency is at least 1.6 ± 0.3 that of the nearby solar-like stars. This value extends Ghez et al.'s (1993) and Leinert's et al.'s (1993) determination of an excess binary frequency to 3 AU separation. We used the WT/TT type and the K-L color index to distinguish between systems with and without inner disks. We find no convincing difference in the binary frequency or distribution of separations of the systems with and without inner disks. The 1.3 mm continuum emission of the single systems exceeds that of the multiples suggesting that their extensive outer disks are more massive. The specific angular momenta of the binaries overlap those of molecular cloud cores measured by Goodman et al. (1993). Subject headings: binaries: visual-occultations-open clusters and associations: generalstars: pre-main-sequence a coauthor. David Allen died on 1994 July 26. We dedicate the paper to his memory.
We present the results of our monitoring study of the IR photometric and spectroscopic variability of the T Tau multiple system. We also present data on the apparent position of T Tau S with respect to T Tau N, and two new spatially resolved observations of the T Tau Sa-Sb binary. T Tau N has not varied by more than 0.2 magnitudes in K and L' flux during the 8 years of our observations, though its Br gamma and Br alpha emission line fluxes have varied by nearly a factor of four during this time. For the unresolved T Tau S system, we have derived a 20 year light curve based on our images and on measurements available in the literature. T Tau S varies by 2-3 magnitudes in K and L'-band brightness in a ``redder when faint'' manner, consistent with changes along the line of sight in the amount of material that follows an ISM extinction law. Absorption in the 3.05um water-ice feature is seen only in the spectra of T Tau S and it displays variations in depth and profile. H_2 (2.12 um) emission is also detected only at the position of T Tau S; the H_2, Br gamma and Br alpha emission line fluxes also vary. We have found that the apparent positions of T Tau S with respect to T Tau N and T Tau Sb with respect to Sa are consistent with gravitationally bound orbital motion. The possible orbits of the T Tau S binary imply that Sa is likely the most massive component in this young triple. A reanalysis of the motion of the radio source associated with T Tau S provides no evidence for an ejection event in the T Tau system.Comment: 49 pages, including 17 figures. Accepted for publication in the Astrophysical Journa
Loki is the most powerful volcano in the Solar System. It has been observed to be in continuous though variable activity since 1979. Synthesis of more than a decade of groundbased data suggests that Loki eruptions are cyclic, with a 540 day period. Application of a simple lava cooling model to temperatures in Loki Patera, and eruption start and end times, implies that brightenings are due to a resurfacing wave propagating across the patera. The data are most consistent with lava lake overturn, but resurfacing by lava flows cannot be ruled out. A porosity gradient in the lake crust could cause lava lake overturn to occur periodically on the timescale observed.
[1] We report the observation of two stellar occultations by Titan on 14 November 2003, using stations in the Indian Ocean, southern Africa, Spain, and northern and southern Americas. These occultations probed altitudes between $550 and 250 km ($1 to 250 mbar) in Titan's upper stratosphere. The light curves reveal a sharp inversion layer near 515 ± 6 km altitude (1.5 mbar pressure level), where the temperature increases by 15 K in only 6 km. This layer is close to an inversion layer observed fourteen months later by the Huygens HASI instrument during the entry of the probe in Titan's atmosphere on 14 January 2005 [Fulchignoni et al., 2005]. Central flashes observed during the first occultation provide constraints on the zonal wind regime at 250 km, with a strong northern jet ($200 m s À1 ) around the latitude 55°N, wind velocities of $150 m s À1 near the equator, and progressively weaker winds as more southern latitudes are probed. The haze distribution around Titan's limb at 250 km altitude is close to that predicted by the Global Circulation Model of Rannou et al. (2004) in the southern hemisphere, but a clearing north of 40°N is necessary to explain our data. This contrasts with Rannou et al.'s (2004) model, which predicts a very thick polar hood over Titan's northern polar regions. Simultaneous observations of the flashes at various wavelengths provide a dependence of t / l Àq , with q = 1.8 ± 0.5 between 0.51 and 2.2 mm for the tangential optical depth of the hazes at 250 km altitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.