We investigate envelope solitary waves on square lattices with two degrees of freedom and nonlinear nearest and next-nearest neighbor interactions. We consider solitary waves which are localized in the direction of their motion and periodically modulated along the perpendicular direction. In the quasimonochromatic approximation and low-amplitude limit a system of two coupled nonlinear Schrödinger equations (CNLS) is obtained for the envelopes of the longitudinal and transversal displacements. For the case of bright envelope solitary waves the solvability condition is discussed, also with respect to the modulation. The stability of two special solution classes (type-I and type-II) of the CNLS equations is tested by molecular dynamics simulations. The shape of type-I solitary waves does not change during propagation, whereas the width of type-II excitations oscillates in time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.