The molecular beam epitaxy growth and optical properties of the III-V semiconductor alloy InAsSbBi are investigated over a range of growth temperatures and V/III flux ratios. Bulk and quantum well structures grown on the (100) on-axis and offcut GaSb substrates are examined. Bismuth readily incorporates at growth temperatures around 300 °C but results in materials with limited optical quality. Conversely, higher growth temperatures around 400 °C yield improved optical performance but with limited Bi incorporation. Photoluminescence spectroscopy is used to examine the optical properties and bandgap energies of InAsSbBi layers grown at temperatures from 400 to 430 °C using 0.91 and 0.94 As/In flux ratios, 0.10 and 0.12 Sb/In flux ratios, and 0.05 and 0.10 Bi/In flux ratios. Emission is observed from low to room temperature with peaks ranging from 3.7 to 4.6 μm. The relationships between Bi incorporation, surface morphology, growth temperature, and group-V flux are examined. Large concentrations of Bi-rich surface features are observed on samples where the incident Bi flux neither fully incorporates nor desorbs but instead accumulates on the surface and coalesces into droplets.
The physical characteristics of the fundamental absorption edge of semi-insulating GaAs and unintentionally doped GaSb, InAs, and InSb are examined using spectroscopic ellipsometry. A five parameter model is developed to describe the key characteristics of the absorption edge. Among these parameters are the bandgap energy, the characteristic energy of the Urbach tail, and the absorption coefficient at the bandgap energy. The results indicate that the Coulomb interaction strongly influences the shape of the band edge with progressively less influence as the bandgap energy decreases. The energy dependence of the optical transition strength is observed to be nearly constant in narrow bandgap InSb.
The growth of Bi-containing III-V alloys requires careful control over temperature and group-V fluxes due to the low equilibrium solubility of Bi and its tendency to surface segregate into Bi-rich droplet features. A model for molecular beam epitaxy growth based on the kinetics of atomic desorption, incorporation, surface accumulation, and droplet formation is applied to the bismide alloy InAsSbBi grown on GaSb substrates. A steady-state solution is derived for the Bi, Sb, and As mole fractions and surface layer coverages based on the Bi, Sb, and As fluxes. A nonlinear least-squares algorithm is used to fit the growth model parameters to experimentally measured Bi mole fractions in bulk and quantum well InAsSbBi samples grown at 400 °C and 420 °C. The Bi mole fraction ranges from 0.12% to 1.86% among 17 samples examined. The results indicate that as the growth temperature increases, the rate of Bi incorporation decreases and the rate of Bi self-desorption increases. A strong interaction is observed between Bi and As that plays a role in the desorption of excess Bi from the growth surface, thus reducing the likelihood of Bi-rich droplet formation when an excess As flux is present. Significantly, the model predicts that the incorporation of Bi is limited to mole fractions of 1.43% at 400 °C and 0.30% at 420 °C in lattice-matched bulk InAsSbBi grown on GaSb substrates.
The physical and chemical properties of 210 nm thick InAsSbBi layers grown by molecular beam epitaxy at temperatures between 400 and 430 °C on (100) GaSb substrates are investigated using Rutherford backscattering, X-ray diffraction, transmission electron microscopy, Nomarski optical microscopy, and atomic force microscopy. The results indicate that the layers are nearly lattice matched, coherently strained, and contain dilute Bi mole fractions. Large surface droplets with diameters on the order of 1 μm and densities on the order of 106 cm−2 are observed when the InAsSbBi growth is performed with lean As overpressures around 1%. Surface droplets are not observed when the As overpressure is increased to 4%. Small crystalline droplets with diameters on the order of 70 nm and densities on the order of 1010 cm−2 are observed between the large droplets for InAsSbBi grown at 430 °C. Analysis of one of the small droplets indicates a misoriented zinc blende crystal structure composed primarily of In, Sb, and Bi, with a lattice constant of 6.543 ± 0.038 Å. Lateral modulation in the Bi mole fraction is observed in InAsSbBi layers grown at 400 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.