The Java Island is an active volcanic arc that experiences several volcanism episodes, which gradually changes from South to North from the Late Oligocene to Pleistocene, following the subduction of the Australian plates underneath the Eurasian plates. During the Eocene, the southern and northern part of Java was connected as one passive margin system with the sediment supply mainly comes from Sundaland in the north. The compressional tectonics creates a flexural margin and a deep depression in the central axis of Java Island and acts as an ultimate deep-sea depocenter in the Neogene period. In contrast to the neighboring Northwest and Northeast Java Basins in the Northern edges of Java Island, the basin configuration in the East-West trending depression in median ranges of Java (from Bogor to Kendeng Troughs) are visually undetected by seismic due to the immense Quaternary volcanic eruption covers.Five focused window areas are selected for this study. A total of 1,893 Km sections, 584 rock samples, 1569 gravity and magnetic data, and 29 geochemical samples (rocks, oil, and gas samples) were acquired during the study. Geological fieldwork was focused on the stratigraphic unit composition and the observable features of deformation products from the outcrops. Due to the Paleogene deposit exposure scarcity in the Central-East Java area, the rock samples were also collected from the mud volcano ejected materials in the Sangiran Dome.The distinct subsurface configuration differences between Bogor and Kendeng Troughs are mainly in the tectonic basement involvement and the effect of the shortening on the formerly rift basin. Both Bogor and Kendeng Troughs are active petroleum systems that generate type II /III Kerogen typical of reduction zone organic material derived from transition to the shallow marine environment. The result suggests that these basins are secular from the neighboring basins with a native petroleum system specific to the palaeogeographical condition during the Paleogene to Neogene periods where the North Java systems (e.g., Northwest and Northeast Java Basin) was characterized by oxidized terrigenous type III Kerogen.
The seismic far-offset data plays important role in seismic subsurface imaging and reservoir parameters derivation, however, it is often distorted by the hockey stick effect due to improper correction of the Vertical Transverse Isotropy (VTI) during the seismic velocity analysis. The anisotropy parameter η is needed to properly correct the VTI effect. The anisotropy parameters of ε and δ obtained from log and core measurements, can be used to estimate the η values, however, the upscaling effects due to the different frequencies of the wave sources used in the measurements must be carefully taken into account. The objective is to get better understanding on the proper uses of anisotropy parameters in the the velocity analysis of deepwater seismic gather data. To achieve the objective, the anisotropy parameters from ultrasonic core measurements and dipole sonic log were used to model the seismic CDP gathers. The upscaling effects is reflected by the big difference of measured anisotropy values, in which the core measurement value is about 40 times higher than the log measurement value. The CDP gathers modelling results show that, due to the upscaling effect, the log and core-based models show significant differences of far-offset amplitude and hockey sticks responses. The differences can be minimized by scaling-down the log anisotropy values to core anisotropy values by using equations established from core – log anisotropy values cross-plot. The study emphasizes the importances of integrating anisotropy parameters from core and log data to minimize the upscaling effect to get the best η for the VTI correction in seismic velocity analysis.
Lettuce is one of the most popular horticultural crops. It is necessary to make an effort to increase lettuce production to meet market demand. One of the efforts is engineering cultivation systems through rice straw mulch and organic fertilizers application. The aims of studied to determine the effect of rice straw mulch and organic fertilizer on growth and production of lettuce. The research was conducted at Nudira Fresh Green House, PT. Nudira Sumber Daya Indonesia, Warnasari Village, Pangalengan Subdistrict, Bandung District, West Java. This study used factorial randomized block design with 3 replications. There were 2 factors with 8 treatment combinations. Factor I was mulch dose: control, 4 t ha−1 rice straw mulch, 6 t ha−1 rice straw mulch, 8 t ha−1 rice straw mulch. Factor II was organic fertilizer types: 20 t ha−1 cow manure, and 20 t ha−1 compost. The results showed that the rice straw mulch dose and organic fertilizer type did not significantly effect on plant height, leaves number, production per plant sample, and production per plant plot. Application of 8 t ha−1 rice straw mulch was able to increase plant height, production per plant sample, and production per plant plot. The cow manure application was able to increase plant height, leaves number, production per plant plot, and production per plant sample compared to using compost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.