The demanding uses of fossil fuels and their associated environmental footprints are driving researches into renewable energy productions from organic resources and waste. Anaerobic digestion (AD) is an environment-friendly and cost-effective method to produce biogas from biomass. This biogas can be used in power generation, heating systems and in a combined heat and power (CHP) system. Nevertheless, biogas produced from AD contains a big fraction of CO2 and less methane purity. Aspen Plus simulation model was developed for the AD process to produce biogas, highlighting the economical potentials and environmental benefits. Four steps of AD including hydrolysis, acidogenesis, acetogenesis, and methanogenesis with eight reactions were simulated based on the respective stoichiometries. Optimization has involved the search to identify optimum feed flow rate and operating pressure to produce the maximum amount of pure methane. The obtained results showed that optimum feed rate was 0.36 l/day and operating pressure of 3 bar with hydrogen flow of 180 l/day. By using these optimum conditions, maximum amount of methane with high purity was achieved. Otherwise, through biomass natural decomposition, the methane would escape to the atmosphere as one of those significant greenhouse gases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.