Genetic improvement of coffee ( Coffea arabica L.) is constrained by low genetic diversity and lack of genetic markers, suitable screening tools, information on the genetic makeup of available gene pool and long generation time. In this context, use of DNA markers such as microsatellites that provide high genetic-resolution becomes highly desirable. Here, we report the development of nine new microsatellite markers from partial genomic library of an elite variety of Coffea arabica . The developed microsatellites revealed robust cross-species amplifications in 17 related species of coffee, and their Polymorphic Information Content varied from 0 to 0.6, 0 to 0.78 and 0.67 to 0.90 for the arabica, robusta genotypes and species representatives, respectively. The data thus suggest their potential use as genetic markers for assessment of germplasm diversity and linkage analysis of coffee.
In recent years, genome wide association studies have discovered a large number of gene loci that play a functional role in innate and adaptive immune pathways associated with leprosy susceptibility. The immunological control of intracellular bacteria M. leprae is modulated by NOD2-mediated signaling of Th1 responses. In this study, we investigated 211 clinically classified leprosy patients and 230 ethnically matched controls in Indian population by genotyping four variants in NOD2 (rs9302752A/G), LRRK2 (rs1873613A/G), RIPK2 (rs40457A/G and rs42490G/A). The LRRK2 locus is associated with leprosy outcome. The LRRK2 rs1873613A minor allele and respective rs1873613AA genotypes were significantly associated with an increased risk whereas the LRRK2 rs1873613G major allele and rs1873613GG genotypes confer protection in paucibacillary and leprosy patients. The reconstructed GA haplotypes from RIPK2 rs40457A/G and rs42490G/A variants was observed to contribute towards increased risk whereas haplotypes AA was observed to confer protective role. Our results indicate that a possible shared mechanisms underlying the development of these two clinical forms of the disease as hypothesized. Our findings confirm and validates the role of gene variants involved in NOD2-mediated signalling pathways that play a role in immunological control of intracellular bacteria M. leprae.
Cultivated rice is a high-volume, low-value cereal crop providing staple food to more than 50% of the world populace. A small group of rice cultivars, traditionally produced on the Indo-Gangetic plains and popularly known as Basmati, have exquisite quality grain characteristics and are a prized commercial commodity. Efforts to improve the yield potential of Basmati have led to the development of several crossbred Basmati-like cultivars. In this study we have analysed the genetic diversity and interrelationships among 33 rice genotypes consisting of the traditional Basmati, improved Basmati-like genotypes developed in India and elsewhere, American long-grain rice and a few non-aromatic rice using a DNA marker-based approach - fluorescent-amplified fragment length polymorphism (f-AFLP). Using a set of nine primer-pairs we scored a total of 10,672 data points over all of the genotypes in the size range of 75-500 bp. The scored data points corresponded to a total of 501 AFLP markers (putative loci/genome landmarks) of which 327 markers (65%) were polymorphic. The f-AFLP marker data, which were analysed using different clustering algorithms and principal component analysis, indicate that: (1) considerable genetic variability exists in the analysed genotypes; (2) traditional Basmati cultivars could be distinctly separated from the crossbred Basmati-like genotypes as well as from the non-aromatic rice; (3) the crossbred Basmati-like cultivars from the subcontinent and elsewhere are genetically very distinct; (4) f-AFLP-based clustering, in general, conforms to the putative pedigree of the improved genotypes. Moreover, analysis to ascertain the scope of AFLP as a technique suggests that the polymorphism revealed by three selective primer-pair combinations is sufficient to obtain reliable estimates of genetic diversity for the type of material used in this study. However, its utility to identify group-specific DNA markers was discounted due to a low frequency of observed group-specific discrete markers.
Establishment of a flow cytometry-based reporter assay to identify nonsense mutation read-through agents. Macrolide antibiotics can induce read-through of disease-causing stop codons. Macrolide-induced protein restoration can alleviate disease-like phenotypes.
IntroductionTGF-β1 is a multi-functional cytokine that plays an important role in breast carcinogenesis. Critical role of TGF-β1 signaling in breast cancer progression is well documented. Some TGF-β1 polymorphisms influence its expression; however, their impact on breast cancer risk is not clear.MethodsWe analyzed 1222 samples in a candidate gene-based genetic association study on two distantly located and ethnically divergent case-control groups of Indian women, followed by a population-based genetic epidemiology study analyzing these polymorphisms in other Indian populations. The c.29C>T (Pro10Leu, rs1982073 or rs1800470) and c.74G>C (Arg25Pro, rs1800471) polymorphisms in the TGF-β1 gene were analyzed using direct DNA sequencing, and peripheral level of TGF-β1 were measured by ELISA.Resultsc.29C>T substitution increased breast cancer risk, irrespective of ethnicity and menopausal status. On the other hand, c.74G>C substitution reduced breast cancer risk significantly in the north Indian group (p = 0.0005) and only in the pre-menopausal women. The protective effect of c.74G>C polymorphism may be ethnicity-specific, as no association was seen in south Indian group. The polymorphic status of c.29C>T was comparable among Indo-Europeans, Dravidians, and Tibeto-Burmans. Interestingly, we found that Tibeto-Burmans lack polymorphism at c.74G>C locus as true for the Chinese populations. However, the Brahmins of Nepal (Indo-Europeans) showed polymorphism in 2.08% of alleles. Mean TGF-β1 was significantly elevated in patients in comparison to controls (p<0.001).Conclusionc.29C>T and c.74G>C polymorphisms in the TGF-β1 gene significantly affect breast cancer risk, which correlates with elevated TGF-β1 level in the patients. The c.29C>T locus is polymorphic across ethnically different populations, but c.74G>C locus is monomorphic in Tibeto-Burmans and polymorphic in other Indian populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.