Increased burden of advanced glycation end-products (AGEs) in case of hyperglycemic conditions leads to the development of retinopathy, nephropathy, and cardiovascular and neurological disorders such as Alzheimer's disease. AGEs are considered as pro-oxidants, and their accumulation increases the oxidative stress. The prolonged exposure to these AGEs is the fundamental cause of chronic oxidative stress. Abnormal morphology of red blood cells (RBCs) and excessive eryptosis has been observed in diabetes, glomerulonephritis, dyslipidemia, and obesity, but yet the contribution of extracellular AGEs remains undefined. In this study, we investigated the effect of AGEs on erythrocytes to determine their impact on the occurrence of different pathological forms of these blood cells. Specifically, carboxymethyllysine (CML), carboxyethyllysine (CEL), and Arg-pyrimidine (Arg-P) which have been reported to be the most pre-dominant AGEs formed under in vivo conditions were used in this study. Results suggested the eryptotic properties of CML, CEL, and Arg-P for RBCs, which were evident from the highly damaged cell membrane and occurrence of abnormal morphologies. Methylglyoxal-modified albumin showed more severe effects, which can be attributed to the high reactivity and pro-oxidant nature of glycation end products. These findings suggest the possible role of AGE-modified albumin towards the morphological changes in erythrocyte's membrane associated with diabetic conditions.
The advancements in medical healthcare networks and bio-medical sensor technologies enabled the use of wearable and body implantable intelligent devices for healthcare monitoring. These battery-operated devices must be capable of very low power operation for ensuring long battery life and also to prevent intense radiations. The major power consuming part of these devices are the multipliers built into the digital filters for performing signal processing operations. This paper proposes a low power signed approximate multiplier architecture for bio-medical signal processing applications. The circuit characteristics and error metrics of the proposed multiplier are estimated to verify its performance advantage over other approximate multipliers. In order to validate the efficacy of the approximate multiplier in real time signal processing applications, a band pass finite impulse response filter (FIR) filter is designed using frequency response masking technique and used in the Pan Tompkins method for the extraction of QRS complex from raw ECG data. The sensitivity, positive predictivity, and detection error rate of the QRS detection method are estimated and the results show that the approximate filtering method implemented gives a comparable performance as that of exact methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.